mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
539 lines
21 KiB
539 lines
21 KiB
/*This code from NVIDIA Megatron:
|
|
* with minor changes. */
|
|
|
|
#pragma once
|
|
|
|
#include <assert.h>
|
|
#include <c10/macros/Macros.h>
|
|
#include <cuda_fp16.h>
|
|
#include <stdint.h>
|
|
|
|
#include <cfloat>
|
|
#include <limits>
|
|
|
|
namespace {
|
|
|
|
template <typename Datatype, int ELEMENTS_PER_LDG>
|
|
__device__ __inline__ void copy_vector(Datatype *dst, const Datatype *src);
|
|
|
|
template <>
|
|
__device__ __inline__ void copy_vector<c10::BFloat16, 1>(
|
|
c10::BFloat16 *dst, const c10::BFloat16 *src) {
|
|
*dst = *src;
|
|
}
|
|
|
|
template <>
|
|
__device__ __inline__ void copy_vector<c10::BFloat16, 4>(
|
|
c10::BFloat16 *dst, const c10::BFloat16 *src) {
|
|
*((float2 *)dst) = *((float2 *)src);
|
|
}
|
|
|
|
template <>
|
|
__device__ __inline__ void copy_vector<c10::Half, 1>(c10::Half *dst,
|
|
const c10::Half *src) {
|
|
*dst = *src;
|
|
}
|
|
|
|
template <>
|
|
__device__ __inline__ void copy_vector<c10::Half, 4>(c10::Half *dst,
|
|
const c10::Half *src) {
|
|
*((float2 *)dst) = *((float2 *)src);
|
|
}
|
|
|
|
template <>
|
|
__device__ __inline__ void copy_vector<uint8_t, 1>(uint8_t *dst,
|
|
const uint8_t *src) {
|
|
*dst = *src;
|
|
}
|
|
|
|
template <>
|
|
__device__ __inline__ void copy_vector<uint8_t, 4>(uint8_t *dst,
|
|
const uint8_t *src) {
|
|
*((half2 *)dst) = *((half2 *)src);
|
|
}
|
|
|
|
int log2_ceil(int value) {
|
|
int log2_value = 0;
|
|
while ((1 << log2_value) < value) ++log2_value;
|
|
return log2_value;
|
|
}
|
|
|
|
template <typename T>
|
|
struct Add {
|
|
__device__ __forceinline__ T operator()(T a, T b) const { return a + b; }
|
|
};
|
|
|
|
template <typename T>
|
|
struct Max {
|
|
__device__ __forceinline__ T operator()(T a, T b) const {
|
|
return a < b ? b : a;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
__device__ __forceinline__ T
|
|
WARP_SHFL_XOR_NATIVE(T value, int laneMask, int width = warpSize,
|
|
unsigned int mask = 0xffffffff) {
|
|
#if CUDA_VERSION >= 9000
|
|
return __shfl_xor_sync(mask, value, laneMask, width);
|
|
#else
|
|
return __shfl_xor(value, laneMask, width);
|
|
#endif
|
|
}
|
|
|
|
template <typename acc_t, int WARP_BATCH, int WARP_SIZE,
|
|
template <typename> class ReduceOp>
|
|
__device__ __forceinline__ void warp_reduce(acc_t *sum) {
|
|
ReduceOp<acc_t> r;
|
|
#pragma unroll
|
|
for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
|
|
#pragma unroll
|
|
for (int i = 0; i < WARP_BATCH; ++i) {
|
|
acc_t b = WARP_SHFL_XOR_NATIVE(sum[i], offset, WARP_SIZE);
|
|
sum[i] = r(sum[i], b);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Extended softmax (from native aten pytorch) with following additional
|
|
* features 1) input scaling 2) Explicit masking
|
|
*/
|
|
template <typename input_t, typename output_t, typename acc_t,
|
|
int log2_elements>
|
|
__global__ void scaled_masked_softmax_warp_forward(
|
|
output_t *dst, const input_t *src, const uint8_t *mask, const acc_t scale,
|
|
int micro_batch_size, int element_count, int pad_batches) {
|
|
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
|
|
// warp_size of method warp_softmax_forward_kernel.
|
|
constexpr int next_power_of_two = 1 << log2_elements;
|
|
constexpr int WARP_SIZE =
|
|
(next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
|
|
constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
|
|
constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
|
|
constexpr int ELEMENTS_PER_LDG_STG = (WARP_ITERATIONS < 4) ? 1 : 4;
|
|
|
|
// blockDim/threadIdx = (WARP_SIZE, WARPS_PER_BLOCK, )
|
|
// gridDim/blockIdx = (seq_len, attn_heads, batches)
|
|
int first_batch =
|
|
(blockDim.y *
|
|
(blockIdx.x + gridDim.x * (blockIdx.y + gridDim.y * blockIdx.z)) +
|
|
threadIdx.y) *
|
|
WARP_BATCH;
|
|
int pad_first_batch = 0;
|
|
if (pad_batches != 1) { // bert style
|
|
pad_first_batch =
|
|
(blockDim.y * (blockIdx.x + gridDim.x * blockIdx.z) + threadIdx.y) *
|
|
WARP_BATCH;
|
|
} else { // gpt2 style
|
|
pad_first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;
|
|
}
|
|
|
|
// micro_batch_size might not be a multiple of WARP_BATCH. Check how
|
|
// many batches have to computed within this WARP.
|
|
int local_batches = micro_batch_size - first_batch;
|
|
if (local_batches > WARP_BATCH) local_batches = WARP_BATCH;
|
|
|
|
// there might be multiple batches per warp. compute the index within the
|
|
// batch
|
|
int local_idx = threadIdx.x;
|
|
|
|
src += first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx;
|
|
dst += first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx;
|
|
mask += pad_first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx;
|
|
|
|
// load data from global memory
|
|
acc_t elements[WARP_BATCH][WARP_ITERATIONS];
|
|
input_t temp_data[ELEMENTS_PER_LDG_STG];
|
|
uint8_t temp_mask[ELEMENTS_PER_LDG_STG];
|
|
#pragma unroll
|
|
for (int i = 0; i < WARP_BATCH; ++i) {
|
|
int batch_element_count = (i >= local_batches) ? 0 : element_count;
|
|
|
|
#pragma unroll
|
|
for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) {
|
|
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
|
|
|
|
if (element_index < batch_element_count) {
|
|
int itr_idx = i * element_count + it * WARP_SIZE;
|
|
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(temp_data, src + itr_idx);
|
|
copy_vector<uint8_t, ELEMENTS_PER_LDG_STG>(temp_mask, mask + itr_idx);
|
|
|
|
#pragma unroll
|
|
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
|
|
if (temp_mask[element] != 1) {
|
|
elements[i][it + element] = (acc_t)temp_data[element] * scale;
|
|
} else {
|
|
elements[i][it + element] = -10000.0;
|
|
}
|
|
}
|
|
} else {
|
|
#pragma unroll
|
|
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
|
|
elements[i][it + element] = -std::numeric_limits<acc_t>::infinity();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// compute max_value
|
|
acc_t max_value[WARP_BATCH];
|
|
#pragma unroll
|
|
for (int i = 0; i < WARP_BATCH; ++i) {
|
|
max_value[i] = elements[i][0];
|
|
#pragma unroll
|
|
for (int it = 1; it < WARP_ITERATIONS; ++it) {
|
|
max_value[i] =
|
|
(max_value[i] > elements[i][it]) ? max_value[i] : elements[i][it];
|
|
}
|
|
}
|
|
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Max>(max_value);
|
|
|
|
acc_t sum[WARP_BATCH]{0.0f};
|
|
#pragma unroll
|
|
for (int i = 0; i < WARP_BATCH; ++i) {
|
|
#pragma unroll
|
|
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
|
elements[i][it] = std::exp((elements[i][it] - max_value[i]));
|
|
sum[i] += elements[i][it];
|
|
}
|
|
}
|
|
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
|
|
|
|
// store result
|
|
output_t out[ELEMENTS_PER_LDG_STG];
|
|
#pragma unroll
|
|
for (int i = 0; i < WARP_BATCH; ++i) {
|
|
if (i >= local_batches) break;
|
|
#pragma unroll
|
|
for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) {
|
|
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
|
|
if (element_index < element_count) {
|
|
#pragma unroll
|
|
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
|
|
out[element] = elements[i][it + element] / sum[i];
|
|
}
|
|
copy_vector<output_t, ELEMENTS_PER_LDG_STG>(
|
|
dst + i * element_count + it * WARP_SIZE, out);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename input_t, typename output_t, typename acc_t,
|
|
int log2_elements>
|
|
__global__ void scaled_masked_softmax_warp_backward(
|
|
output_t *gradInput, input_t *grad, const input_t *output, acc_t scale,
|
|
int micro_batch_size, int element_count) {
|
|
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
|
|
// warp_size of method warp_softmax_backward_kernel.
|
|
constexpr int next_power_of_two = 1 << log2_elements;
|
|
constexpr int WARP_SIZE =
|
|
(next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
|
|
constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
|
|
constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
|
|
constexpr int ELEMENTS_PER_LDG_STG = (WARP_ITERATIONS < 4) ? 1 : 4;
|
|
|
|
// blockDim/threadIdx = (WARP_SIZE, WARPS_PER_BLOCK, )
|
|
// gridDim/blockIdx = (seq_len, attn_heads, batches)
|
|
int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;
|
|
|
|
// micro_batch_size might not be a multiple of WARP_BATCH. Check how
|
|
// many batches have to computed within this WARP.
|
|
int local_batches = micro_batch_size - first_batch;
|
|
if (local_batches > WARP_BATCH) local_batches = WARP_BATCH;
|
|
|
|
// there might be multiple batches per warp. compute the index within the
|
|
// batch
|
|
int local_idx = threadIdx.x;
|
|
|
|
// the first element to process by the current thread
|
|
int thread_offset =
|
|
first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx;
|
|
grad += thread_offset;
|
|
output += thread_offset;
|
|
gradInput += thread_offset;
|
|
|
|
// load data from global memory
|
|
acc_t grad_reg[WARP_BATCH][WARP_ITERATIONS]{0.0f};
|
|
acc_t output_reg[WARP_BATCH][WARP_ITERATIONS]{0.0f};
|
|
input_t temp_grad[ELEMENTS_PER_LDG_STG];
|
|
input_t temp_output[ELEMENTS_PER_LDG_STG];
|
|
#pragma unroll
|
|
for (int i = 0; i < WARP_BATCH; ++i) {
|
|
int batch_element_count = (i >= local_batches) ? 0 : element_count;
|
|
|
|
#pragma unroll
|
|
for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) {
|
|
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
|
|
if (element_index < batch_element_count) {
|
|
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(
|
|
temp_grad, grad + i * element_count + it * WARP_SIZE);
|
|
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(
|
|
temp_output, output + i * element_count + it * WARP_SIZE);
|
|
|
|
#pragma unroll
|
|
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
|
|
output_reg[i][it + element] = (acc_t)temp_output[element];
|
|
}
|
|
#pragma unroll
|
|
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
|
|
grad_reg[i][it + element] =
|
|
(acc_t)temp_grad[element] * output_reg[i][it + element];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
acc_t sum[WARP_BATCH];
|
|
#pragma unroll
|
|
for (int i = 0; i < WARP_BATCH; ++i) {
|
|
sum[i] = grad_reg[i][0];
|
|
#pragma unroll
|
|
for (int it = 1; it < WARP_ITERATIONS; ++it) {
|
|
sum[i] += grad_reg[i][it];
|
|
}
|
|
}
|
|
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
|
|
|
|
// store result
|
|
#pragma unroll
|
|
for (int i = 0; i < WARP_BATCH; ++i) {
|
|
if (i >= local_batches) break;
|
|
#pragma unroll
|
|
for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) {
|
|
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
|
|
if (element_index < element_count) {
|
|
// compute gradients
|
|
output_t out[ELEMENTS_PER_LDG_STG];
|
|
#pragma unroll
|
|
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
|
|
out[element] =
|
|
(output_t)(scale * (grad_reg[i][it + element] -
|
|
output_reg[i][it + element] * sum[i]));
|
|
}
|
|
copy_vector<output_t, ELEMENTS_PER_LDG_STG>(
|
|
gradInput + i * element_count + it * WARP_SIZE, out);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // end of anonymous namespace
|
|
|
|
int get_batch_per_block(int query_seq_len, int key_seq_len, int batches,
|
|
int attn_heads) {
|
|
int log2_elements = log2_ceil(key_seq_len);
|
|
const int next_power_of_two = 1 << log2_elements;
|
|
|
|
int warp_size =
|
|
(next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
|
|
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
|
|
|
|
constexpr int threads_per_block = 128;
|
|
int warps_per_block = (threads_per_block / warp_size);
|
|
int batches_per_block = warps_per_block * batches_per_warp;
|
|
|
|
return batches_per_block;
|
|
}
|
|
|
|
template <typename input_t, typename output_t, typename acc_t>
|
|
void dispatch_scaled_masked_softmax_forward(output_t *dst, const input_t *src,
|
|
const uint8_t *mask,
|
|
const input_t scale,
|
|
int query_seq_len, int key_seq_len,
|
|
int batches, int attn_heads,
|
|
int pad_batches) {
|
|
TORCH_INTERNAL_ASSERT(key_seq_len >= 0 && key_seq_len <= 2048);
|
|
if (key_seq_len == 0) {
|
|
return;
|
|
} else {
|
|
int log2_elements = log2_ceil(key_seq_len);
|
|
const int next_power_of_two = 1 << log2_elements;
|
|
int batch_count = batches * attn_heads * query_seq_len;
|
|
|
|
// This value must match the WARP_SIZE constexpr value computed inside
|
|
// softmax_warp_forward.
|
|
int warp_size =
|
|
(next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
|
|
|
|
// This value must match the WARP_BATCH constexpr value computed inside
|
|
// softmax_warp_forward.
|
|
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
|
|
|
|
// use 128 threads per block to maximimize gpu utilization
|
|
constexpr int threads_per_block = 128;
|
|
|
|
int warps_per_block = (threads_per_block / warp_size);
|
|
int batches_per_block = warps_per_block * batches_per_warp;
|
|
TORCH_INTERNAL_ASSERT(query_seq_len % batches_per_block == 0);
|
|
dim3 blocks(query_seq_len / batches_per_block, attn_heads, batches);
|
|
dim3 threads(warp_size, warps_per_block, 1);
|
|
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
|
|
switch (log2_elements) {
|
|
case 0: // 1
|
|
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 0>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
|
|
break;
|
|
case 1: // 2
|
|
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 1>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
|
|
break;
|
|
case 2: // 4
|
|
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 2>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
|
|
break;
|
|
case 3: // 8
|
|
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 3>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
|
|
break;
|
|
case 4: // 16
|
|
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 4>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
|
|
break;
|
|
case 5: // 32
|
|
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 5>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
|
|
break;
|
|
case 6: // 64
|
|
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 6>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
|
|
break;
|
|
case 7: // 128
|
|
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 7>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
|
|
break;
|
|
case 8: // 256
|
|
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 8>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
|
|
break;
|
|
case 9: // 512
|
|
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 9>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
|
|
break;
|
|
case 10: // 1024
|
|
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 10>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
|
|
break;
|
|
case 11: // 2048
|
|
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 11>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename input_t, typename output_t, typename acc_t>
|
|
void dispatch_scaled_masked_softmax_backward(output_t *grad_input,
|
|
input_t *grad,
|
|
const input_t *output,
|
|
const acc_t scale,
|
|
int query_seq_len, int key_seq_len,
|
|
int batches, int attn_heads) {
|
|
TORCH_INTERNAL_ASSERT(key_seq_len >= 0 && key_seq_len <= 2048);
|
|
if (key_seq_len == 0) {
|
|
return;
|
|
} else {
|
|
int log2_elements = log2_ceil(key_seq_len);
|
|
const int next_power_of_two = 1 << log2_elements;
|
|
int batch_count = batches * attn_heads * query_seq_len;
|
|
|
|
// This value must match the WARP_SIZE constexpr value computed inside
|
|
// softmax_warp_backward.
|
|
int warp_size =
|
|
(next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
|
|
|
|
// This value must match the WARP_BATCH constexpr value computed inside
|
|
// softmax_warp_backward.
|
|
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
|
|
|
|
// use 128 threads per block to maximimize gpu utilization
|
|
constexpr int threads_per_block = 128;
|
|
|
|
int warps_per_block = (threads_per_block / warp_size);
|
|
int batches_per_block = warps_per_block * batches_per_warp;
|
|
int blocks = batch_count / batches_per_block;
|
|
dim3 threads(warp_size, warps_per_block, 1);
|
|
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
|
|
switch (log2_elements) {
|
|
case 0: // 1
|
|
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 0>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
grad_input, grad, output, scale, batch_count, key_seq_len);
|
|
break;
|
|
case 1: // 2
|
|
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 1>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
grad_input, grad, output, scale, batch_count, key_seq_len);
|
|
break;
|
|
case 2: // 4
|
|
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 2>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
grad_input, grad, output, scale, batch_count, key_seq_len);
|
|
break;
|
|
case 3: // 8
|
|
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 3>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
grad_input, grad, output, scale, batch_count, key_seq_len);
|
|
break;
|
|
case 4: // 16
|
|
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 4>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
grad_input, grad, output, scale, batch_count, key_seq_len);
|
|
break;
|
|
case 5: // 32
|
|
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 5>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
grad_input, grad, output, scale, batch_count, key_seq_len);
|
|
break;
|
|
case 6: // 64
|
|
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 6>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
grad_input, grad, output, scale, batch_count, key_seq_len);
|
|
break;
|
|
case 7: // 128
|
|
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 7>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
grad_input, grad, output, scale, batch_count, key_seq_len);
|
|
break;
|
|
case 8: // 256
|
|
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 8>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
grad_input, grad, output, scale, batch_count, key_seq_len);
|
|
break;
|
|
case 9: // 512
|
|
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 9>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
grad_input, grad, output, scale, batch_count, key_seq_len);
|
|
break;
|
|
case 10: // 1024
|
|
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 10>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
grad_input, grad, output, scale, batch_count, key_seq_len);
|
|
break;
|
|
case 11: // 2048
|
|
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 11>
|
|
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
|
grad_input, grad, output, scale, batch_count, key_seq_len);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|