/*This code from NVIDIA Megatron: * with minor changes. */ #pragma once #include #include #include #include #include #include namespace { template __device__ __inline__ void copy_vector(Datatype *dst, const Datatype *src); template <> __device__ __inline__ void copy_vector( c10::BFloat16 *dst, const c10::BFloat16 *src) { *dst = *src; } template <> __device__ __inline__ void copy_vector( c10::BFloat16 *dst, const c10::BFloat16 *src) { *((float2 *)dst) = *((float2 *)src); } template <> __device__ __inline__ void copy_vector(c10::Half *dst, const c10::Half *src) { *dst = *src; } template <> __device__ __inline__ void copy_vector(c10::Half *dst, const c10::Half *src) { *((float2 *)dst) = *((float2 *)src); } template <> __device__ __inline__ void copy_vector(uint8_t *dst, const uint8_t *src) { *dst = *src; } template <> __device__ __inline__ void copy_vector(uint8_t *dst, const uint8_t *src) { *((half2 *)dst) = *((half2 *)src); } int log2_ceil(int value) { int log2_value = 0; while ((1 << log2_value) < value) ++log2_value; return log2_value; } template struct Add { __device__ __forceinline__ T operator()(T a, T b) const { return a + b; } }; template struct Max { __device__ __forceinline__ T operator()(T a, T b) const { return a < b ? b : a; } }; template __device__ __forceinline__ T WARP_SHFL_XOR_NATIVE(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff) { #if CUDA_VERSION >= 9000 return __shfl_xor_sync(mask, value, laneMask, width); #else return __shfl_xor(value, laneMask, width); #endif } template class ReduceOp> __device__ __forceinline__ void warp_reduce(acc_t *sum) { ReduceOp r; #pragma unroll for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) { #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { acc_t b = WARP_SHFL_XOR_NATIVE(sum[i], offset, WARP_SIZE); sum[i] = r(sum[i], b); } } } /* * Extended softmax (from native aten pytorch) with following additional * features 1) input scaling 2) Explicit masking */ template __global__ void scaled_masked_softmax_warp_forward( output_t *dst, const input_t *src, const uint8_t *mask, const acc_t scale, int micro_batch_size, int element_count, int pad_batches) { // WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and // warp_size of method warp_softmax_forward_kernel. constexpr int next_power_of_two = 1 << log2_elements; constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE; constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE; constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1; constexpr int ELEMENTS_PER_LDG_STG = (WARP_ITERATIONS < 4) ? 1 : 4; // blockDim/threadIdx = (WARP_SIZE, WARPS_PER_BLOCK, ) // gridDim/blockIdx = (seq_len, attn_heads, batches) int first_batch = (blockDim.y * (blockIdx.x + gridDim.x * (blockIdx.y + gridDim.y * blockIdx.z)) + threadIdx.y) * WARP_BATCH; int pad_first_batch = 0; if (pad_batches != 1) { // bert style pad_first_batch = (blockDim.y * (blockIdx.x + gridDim.x * blockIdx.z) + threadIdx.y) * WARP_BATCH; } else { // gpt2 style pad_first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH; } // micro_batch_size might not be a multiple of WARP_BATCH. Check how // many batches have to computed within this WARP. int local_batches = micro_batch_size - first_batch; if (local_batches > WARP_BATCH) local_batches = WARP_BATCH; // there might be multiple batches per warp. compute the index within the // batch int local_idx = threadIdx.x; src += first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx; dst += first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx; mask += pad_first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx; // load data from global memory acc_t elements[WARP_BATCH][WARP_ITERATIONS]; input_t temp_data[ELEMENTS_PER_LDG_STG]; uint8_t temp_mask[ELEMENTS_PER_LDG_STG]; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { int batch_element_count = (i >= local_batches) ? 0 : element_count; #pragma unroll for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) { int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE; if (element_index < batch_element_count) { int itr_idx = i * element_count + it * WARP_SIZE; copy_vector(temp_data, src + itr_idx); copy_vector(temp_mask, mask + itr_idx); #pragma unroll for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) { if (temp_mask[element] != 1) { elements[i][it + element] = (acc_t)temp_data[element] * scale; } else { elements[i][it + element] = -10000.0; } } } else { #pragma unroll for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) { elements[i][it + element] = -std::numeric_limits::infinity(); } } } } // compute max_value acc_t max_value[WARP_BATCH]; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { max_value[i] = elements[i][0]; #pragma unroll for (int it = 1; it < WARP_ITERATIONS; ++it) { max_value[i] = (max_value[i] > elements[i][it]) ? max_value[i] : elements[i][it]; } } warp_reduce(max_value); acc_t sum[WARP_BATCH]{0.0f}; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { #pragma unroll for (int it = 0; it < WARP_ITERATIONS; ++it) { elements[i][it] = std::exp((elements[i][it] - max_value[i])); sum[i] += elements[i][it]; } } warp_reduce(sum); // store result output_t out[ELEMENTS_PER_LDG_STG]; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { if (i >= local_batches) break; #pragma unroll for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) { int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE; if (element_index < element_count) { #pragma unroll for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) { out[element] = elements[i][it + element] / sum[i]; } copy_vector( dst + i * element_count + it * WARP_SIZE, out); } else { break; } } } } template __global__ void scaled_masked_softmax_warp_backward( output_t *gradInput, input_t *grad, const input_t *output, acc_t scale, int micro_batch_size, int element_count) { // WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and // warp_size of method warp_softmax_backward_kernel. constexpr int next_power_of_two = 1 << log2_elements; constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE; constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE; constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1; constexpr int ELEMENTS_PER_LDG_STG = (WARP_ITERATIONS < 4) ? 1 : 4; // blockDim/threadIdx = (WARP_SIZE, WARPS_PER_BLOCK, ) // gridDim/blockIdx = (seq_len, attn_heads, batches) int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH; // micro_batch_size might not be a multiple of WARP_BATCH. Check how // many batches have to computed within this WARP. int local_batches = micro_batch_size - first_batch; if (local_batches > WARP_BATCH) local_batches = WARP_BATCH; // there might be multiple batches per warp. compute the index within the // batch int local_idx = threadIdx.x; // the first element to process by the current thread int thread_offset = first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx; grad += thread_offset; output += thread_offset; gradInput += thread_offset; // load data from global memory acc_t grad_reg[WARP_BATCH][WARP_ITERATIONS]{0.0f}; acc_t output_reg[WARP_BATCH][WARP_ITERATIONS]{0.0f}; input_t temp_grad[ELEMENTS_PER_LDG_STG]; input_t temp_output[ELEMENTS_PER_LDG_STG]; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { int batch_element_count = (i >= local_batches) ? 0 : element_count; #pragma unroll for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) { int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE; if (element_index < batch_element_count) { copy_vector( temp_grad, grad + i * element_count + it * WARP_SIZE); copy_vector( temp_output, output + i * element_count + it * WARP_SIZE); #pragma unroll for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) { output_reg[i][it + element] = (acc_t)temp_output[element]; } #pragma unroll for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) { grad_reg[i][it + element] = (acc_t)temp_grad[element] * output_reg[i][it + element]; } } } } acc_t sum[WARP_BATCH]; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { sum[i] = grad_reg[i][0]; #pragma unroll for (int it = 1; it < WARP_ITERATIONS; ++it) { sum[i] += grad_reg[i][it]; } } warp_reduce(sum); // store result #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { if (i >= local_batches) break; #pragma unroll for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) { int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE; if (element_index < element_count) { // compute gradients output_t out[ELEMENTS_PER_LDG_STG]; #pragma unroll for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) { out[element] = (output_t)(scale * (grad_reg[i][it + element] - output_reg[i][it + element] * sum[i])); } copy_vector( gradInput + i * element_count + it * WARP_SIZE, out); } } } } } // end of anonymous namespace int get_batch_per_block(int query_seq_len, int key_seq_len, int batches, int attn_heads) { int log2_elements = log2_ceil(key_seq_len); const int next_power_of_two = 1 << log2_elements; int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE; int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1; constexpr int threads_per_block = 128; int warps_per_block = (threads_per_block / warp_size); int batches_per_block = warps_per_block * batches_per_warp; return batches_per_block; } template void dispatch_scaled_masked_softmax_forward(output_t *dst, const input_t *src, const uint8_t *mask, const input_t scale, int query_seq_len, int key_seq_len, int batches, int attn_heads, int pad_batches) { TORCH_INTERNAL_ASSERT(key_seq_len >= 0 && key_seq_len <= 2048); if (key_seq_len == 0) { return; } else { int log2_elements = log2_ceil(key_seq_len); const int next_power_of_two = 1 << log2_elements; int batch_count = batches * attn_heads * query_seq_len; // This value must match the WARP_SIZE constexpr value computed inside // softmax_warp_forward. int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE; // This value must match the WARP_BATCH constexpr value computed inside // softmax_warp_forward. int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1; // use 128 threads per block to maximimize gpu utilization constexpr int threads_per_block = 128; int warps_per_block = (threads_per_block / warp_size); int batches_per_block = warps_per_block * batches_per_warp; TORCH_INTERNAL_ASSERT(query_seq_len % batches_per_block == 0); dim3 blocks(query_seq_len / batches_per_block, attn_heads, batches); dim3 threads(warp_size, warps_per_block, 1); // Launch code would be more elegant if C++ supported FOR CONSTEXPR switch (log2_elements) { case 0: // 1 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 1: // 2 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 2: // 4 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 3: // 8 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 4: // 16 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 5: // 32 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 6: // 64 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 7: // 128 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 8: // 256 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 9: // 512 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 10: // 1024 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 11: // 2048 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; default: break; } } } template void dispatch_scaled_masked_softmax_backward(output_t *grad_input, input_t *grad, const input_t *output, const acc_t scale, int query_seq_len, int key_seq_len, int batches, int attn_heads) { TORCH_INTERNAL_ASSERT(key_seq_len >= 0 && key_seq_len <= 2048); if (key_seq_len == 0) { return; } else { int log2_elements = log2_ceil(key_seq_len); const int next_power_of_two = 1 << log2_elements; int batch_count = batches * attn_heads * query_seq_len; // This value must match the WARP_SIZE constexpr value computed inside // softmax_warp_backward. int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE; // This value must match the WARP_BATCH constexpr value computed inside // softmax_warp_backward. int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1; // use 128 threads per block to maximimize gpu utilization constexpr int threads_per_block = 128; int warps_per_block = (threads_per_block / warp_size); int batches_per_block = warps_per_block * batches_per_warp; int blocks = batch_count / batches_per_block; dim3 threads(warp_size, warps_per_block, 1); // Launch code would be more elegant if C++ supported FOR CONSTEXPR switch (log2_elements) { case 0: // 1 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 1: // 2 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 2: // 4 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 3: // 8 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 4: // 16 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 5: // 32 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 6: // 64 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 7: // 128 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 8: // 256 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 9: // 512 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 10: // 1024 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 11: // 2048 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; default: break; } } }