mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
142 lines
4.8 KiB
142 lines
4.8 KiB
/*This code from NVIDIA apex:
|
|
* https://github.com/NVIDIA/apex
|
|
* with minor changes. */
|
|
|
|
#include <torch/extension.h>
|
|
|
|
#include <cassert>
|
|
#include <vector>
|
|
|
|
#include "compat.h"
|
|
|
|
namespace {
|
|
|
|
void compute_n1_n2(at::Tensor input, at::IntArrayRef normalized_shape, int &n1,
|
|
int &n2) {
|
|
int idiff = input.ndimension() - normalized_shape.size();
|
|
n2 = 1;
|
|
for (int i = 0; i < (int)normalized_shape.size(); ++i) {
|
|
assert(input.sizes()[i + idiff] == normalized_shape[i]);
|
|
n2 *= normalized_shape[i];
|
|
}
|
|
n1 = 1;
|
|
for (int i = 0; i < idiff; ++i) {
|
|
n1 *= input.sizes()[i];
|
|
}
|
|
}
|
|
|
|
void check_args(at::IntArrayRef normalized_shape, at::Tensor gamma,
|
|
at::Tensor beta) {
|
|
TORCH_CHECK(!gamma.defined() || gamma.sizes().equals(normalized_shape));
|
|
TORCH_CHECK(!beta.defined() || beta.sizes().equals(normalized_shape));
|
|
}
|
|
|
|
void check_args(at::Tensor input, at::IntArrayRef normalized_shape, int &n1,
|
|
int &n2) {
|
|
int64_t normalized_ndim = normalized_shape.size();
|
|
|
|
if (normalized_ndim < 1) {
|
|
std::stringstream ss;
|
|
ss << "Expected normalized_shape to be at least 1-dimensional, i.e., "
|
|
<< "containing at least one element, but got normalized_shape="
|
|
<< normalized_shape;
|
|
throw std::runtime_error(ss.str());
|
|
}
|
|
|
|
auto input_shape = input.sizes();
|
|
auto input_ndim = input.dim();
|
|
|
|
if (input_ndim < normalized_ndim ||
|
|
!input_shape.slice(input_ndim - normalized_ndim)
|
|
.equals(normalized_shape)) {
|
|
std::stringstream ss;
|
|
ss << "Given normalized_shape=" << normalized_shape
|
|
<< ", expected input with shape [*";
|
|
for (auto size : normalized_shape) {
|
|
ss << ", " << size;
|
|
}
|
|
ss << "], but got input of size" << input_shape;
|
|
throw std::runtime_error(ss.str());
|
|
}
|
|
|
|
compute_n1_n2(input, normalized_shape, n1, n2);
|
|
}
|
|
|
|
void check_args(at::Tensor input, at::IntArrayRef normalized_shape,
|
|
at::Tensor gamma, at::Tensor beta, int &n1, int &n2) {
|
|
check_args(input, normalized_shape, n1, n2);
|
|
check_args(normalized_shape, gamma, beta);
|
|
}
|
|
} // namespace
|
|
|
|
void cuda_layer_norm(at::Tensor *output, at::Tensor *mean, at::Tensor *invvar,
|
|
at::Tensor *input, int n1, int n2,
|
|
at::IntArrayRef normalized_shape, at::Tensor *gamma,
|
|
at::Tensor *beta, double epsilon);
|
|
|
|
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
|
|
#define CHECK_CONTIGUOUS(x) \
|
|
TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
|
#define CHECK_INPUT(x) \
|
|
CHECK_CUDA(x); \
|
|
CHECK_CONTIGUOUS(x)
|
|
|
|
std::vector<at::Tensor> layer_norm_affine(at::Tensor input,
|
|
at::IntArrayRef normalized_shape,
|
|
at::Tensor gamma, at::Tensor beta,
|
|
double epsilon) {
|
|
CHECK_INPUT(input);
|
|
CHECK_INPUT(gamma);
|
|
CHECK_INPUT(beta);
|
|
int n1, n2;
|
|
check_args(input, normalized_shape, gamma, beta, n1, n2);
|
|
|
|
at::Tensor output =
|
|
at::empty_like(input, gamma.options().dtype(gamma.scalar_type()));
|
|
at::Tensor mean =
|
|
at::empty({n1}, input.options().dtype(at::ScalarType::Float));
|
|
at::Tensor invvar = at::empty_like(mean);
|
|
|
|
cuda_layer_norm(&output, &mean, &invvar, &input, n1, n2, normalized_shape,
|
|
&gamma, &beta, epsilon);
|
|
|
|
return {output, mean, invvar};
|
|
}
|
|
|
|
void cuda_layer_norm_gradient(at::Tensor *dout, at::Tensor *mean,
|
|
at::Tensor *invvar, at::Tensor *input, int n1,
|
|
int n2, at::IntArrayRef normalized_shape,
|
|
at::Tensor *gamma, at::Tensor *beta,
|
|
double epsilon, at::Tensor *grad_input,
|
|
at::Tensor *grad_gamma, at::Tensor *grad_beta);
|
|
|
|
std::vector<at::Tensor> layer_norm_gradient_affine(
|
|
at::Tensor dout, at::Tensor mean, at::Tensor invvar, at::Tensor input,
|
|
at::IntArrayRef normalized_shape, at::Tensor gamma, at::Tensor beta,
|
|
double epsilon) {
|
|
CHECK_INPUT(dout);
|
|
CHECK_INPUT(mean);
|
|
CHECK_INPUT(invvar);
|
|
CHECK_INPUT(input);
|
|
CHECK_INPUT(gamma);
|
|
CHECK_INPUT(beta);
|
|
int n1, n2;
|
|
check_args(input, normalized_shape, gamma, beta, n1, n2);
|
|
|
|
at::Tensor grad_input = at::empty_like(input);
|
|
at::Tensor grad_gamma = at::empty_like(gamma);
|
|
at::Tensor grad_beta = at::empty_like(beta);
|
|
|
|
cuda_layer_norm_gradient(&dout, &mean, &invvar, &input, n1, n2,
|
|
normalized_shape, &gamma, &beta, epsilon,
|
|
&grad_input, &grad_gamma, &grad_beta);
|
|
|
|
return {grad_input, grad_gamma, grad_beta};
|
|
}
|
|
|
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
|
m.def("forward_affine", &layer_norm_affine, "LayerNorm forward (CUDA)");
|
|
m.def("backward_affine", &layer_norm_gradient_affine,
|
|
"LayerNorm backward (CUDA)");
|
|
}
|