/*This code from NVIDIA apex: * https://github.com/NVIDIA/apex * with minor changes. */ #include #include #include #include "compat.h" namespace { void compute_n1_n2(at::Tensor input, at::IntArrayRef normalized_shape, int &n1, int &n2) { int idiff = input.ndimension() - normalized_shape.size(); n2 = 1; for (int i = 0; i < (int)normalized_shape.size(); ++i) { assert(input.sizes()[i + idiff] == normalized_shape[i]); n2 *= normalized_shape[i]; } n1 = 1; for (int i = 0; i < idiff; ++i) { n1 *= input.sizes()[i]; } } void check_args(at::IntArrayRef normalized_shape, at::Tensor gamma, at::Tensor beta) { TORCH_CHECK(!gamma.defined() || gamma.sizes().equals(normalized_shape)); TORCH_CHECK(!beta.defined() || beta.sizes().equals(normalized_shape)); } void check_args(at::Tensor input, at::IntArrayRef normalized_shape, int &n1, int &n2) { int64_t normalized_ndim = normalized_shape.size(); if (normalized_ndim < 1) { std::stringstream ss; ss << "Expected normalized_shape to be at least 1-dimensional, i.e., " << "containing at least one element, but got normalized_shape=" << normalized_shape; throw std::runtime_error(ss.str()); } auto input_shape = input.sizes(); auto input_ndim = input.dim(); if (input_ndim < normalized_ndim || !input_shape.slice(input_ndim - normalized_ndim) .equals(normalized_shape)) { std::stringstream ss; ss << "Given normalized_shape=" << normalized_shape << ", expected input with shape [*"; for (auto size : normalized_shape) { ss << ", " << size; } ss << "], but got input of size" << input_shape; throw std::runtime_error(ss.str()); } compute_n1_n2(input, normalized_shape, n1, n2); } void check_args(at::Tensor input, at::IntArrayRef normalized_shape, at::Tensor gamma, at::Tensor beta, int &n1, int &n2) { check_args(input, normalized_shape, n1, n2); check_args(normalized_shape, gamma, beta); } } // namespace void cuda_layer_norm(at::Tensor *output, at::Tensor *mean, at::Tensor *invvar, at::Tensor *input, int n1, int n2, at::IntArrayRef normalized_shape, at::Tensor *gamma, at::Tensor *beta, double epsilon); #define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor") #define CHECK_CONTIGUOUS(x) \ TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") #define CHECK_INPUT(x) \ CHECK_CUDA(x); \ CHECK_CONTIGUOUS(x) std::vector layer_norm_affine(at::Tensor input, at::IntArrayRef normalized_shape, at::Tensor gamma, at::Tensor beta, double epsilon) { CHECK_INPUT(input); CHECK_INPUT(gamma); CHECK_INPUT(beta); int n1, n2; check_args(input, normalized_shape, gamma, beta, n1, n2); at::Tensor output = at::empty_like(input, gamma.options().dtype(gamma.scalar_type())); at::Tensor mean = at::empty({n1}, input.options().dtype(at::ScalarType::Float)); at::Tensor invvar = at::empty_like(mean); cuda_layer_norm(&output, &mean, &invvar, &input, n1, n2, normalized_shape, &gamma, &beta, epsilon); return {output, mean, invvar}; } void cuda_layer_norm_gradient(at::Tensor *dout, at::Tensor *mean, at::Tensor *invvar, at::Tensor *input, int n1, int n2, at::IntArrayRef normalized_shape, at::Tensor *gamma, at::Tensor *beta, double epsilon, at::Tensor *grad_input, at::Tensor *grad_gamma, at::Tensor *grad_beta); std::vector layer_norm_gradient_affine( at::Tensor dout, at::Tensor mean, at::Tensor invvar, at::Tensor input, at::IntArrayRef normalized_shape, at::Tensor gamma, at::Tensor beta, double epsilon) { CHECK_INPUT(dout); CHECK_INPUT(mean); CHECK_INPUT(invvar); CHECK_INPUT(input); CHECK_INPUT(gamma); CHECK_INPUT(beta); int n1, n2; check_args(input, normalized_shape, gamma, beta, n1, n2); at::Tensor grad_input = at::empty_like(input); at::Tensor grad_gamma = at::empty_like(gamma); at::Tensor grad_beta = at::empty_like(beta); cuda_layer_norm_gradient(&dout, &mean, &invvar, &input, n1, n2, normalized_shape, &gamma, &beta, epsilon, &grad_input, &grad_gamma, &grad_beta); return {grad_input, grad_gamma, grad_beta}; } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("forward_affine", &layer_norm_affine, "LayerNorm forward (CUDA)"); m.def("backward_affine", &layer_norm_gradient_affine, "LayerNorm backward (CUDA)"); }