mirror of https://github.com/hpcaitech/ColossalAI
64 lines
2.2 KiB
Python
64 lines
2.2 KiB
Python
import pytest
|
|
import torch
|
|
from packaging import version
|
|
|
|
try:
|
|
pass
|
|
|
|
from colossalai.kernel.triton.token_attention_kernel import token_attn_fwd_2
|
|
|
|
HAS_TRITON = True
|
|
except ImportError:
|
|
HAS_TRITON = False
|
|
print("please install triton from https://github.com/openai/triton")
|
|
|
|
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
|
|
|
|
|
|
def torch_attn(V, P, bs, seqlen, num_head, head_dim):
|
|
V = V.view(bs, seqlen, num_head, head_dim).transpose(1, 2)
|
|
P = P.reshape(num_head, bs, 1, seqlen).transpose(0, 1)
|
|
attn_out = torch.matmul(P, V)
|
|
|
|
return attn_out
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
|
|
)
|
|
def test_token_attn_2():
|
|
pass
|
|
|
|
batch_size, seq_len, head_num, head_dim = 17, 1025, 12, 128
|
|
dtype = torch.float16
|
|
|
|
V = torch.empty((batch_size * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=10)
|
|
Prob = (
|
|
torch.empty((head_num, batch_size * seq_len), dtype=dtype, device="cuda")
|
|
.normal_(mean=0.4, std=0.2)
|
|
.reshape(head_num, batch_size, seq_len)
|
|
.softmax(-1)
|
|
.reshape(head_num, batch_size * seq_len)
|
|
)
|
|
attn_out = torch.empty((batch_size, head_num, head_dim), dtype=dtype, device="cuda")
|
|
|
|
kv_cache_start_loc = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
|
|
kv_cache_seq_len = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
|
|
kv_cache_loc = torch.zeros((batch_size, seq_len), dtype=torch.int32, device="cuda")
|
|
for i in range(batch_size):
|
|
kv_cache_start_loc[i] = i * seq_len
|
|
kv_cache_seq_len[i] = seq_len
|
|
kv_cache_loc[i] = i * seq_len + torch.arange(0, seq_len, dtype=torch.int32, device="cuda")
|
|
|
|
token_attn_fwd_2(Prob, V, attn_out, kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len, seq_len)
|
|
|
|
torch_out = torch_attn(V, Prob, batch_size, seq_len, head_num, head_dim).squeeze()
|
|
o = attn_out
|
|
print("max ", torch.max(torch.abs(torch_out - o)))
|
|
print("mean ", torch.mean(torch.abs(torch_out - o)))
|
|
assert torch.allclose(torch_out, o, atol=1e-2, rtol=0)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_token_attn_2()
|