import pytest import torch from packaging import version try: pass from colossalai.kernel.triton.token_attention_kernel import token_attn_fwd_2 HAS_TRITON = True except ImportError: HAS_TRITON = False print("please install triton from https://github.com/openai/triton") TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4") def torch_attn(V, P, bs, seqlen, num_head, head_dim): V = V.view(bs, seqlen, num_head, head_dim).transpose(1, 2) P = P.reshape(num_head, bs, 1, seqlen).transpose(0, 1) attn_out = torch.matmul(P, V) return attn_out @pytest.mark.skipif( not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4" ) def test_token_attn_2(): pass batch_size, seq_len, head_num, head_dim = 17, 1025, 12, 128 dtype = torch.float16 V = torch.empty((batch_size * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=10) Prob = ( torch.empty((head_num, batch_size * seq_len), dtype=dtype, device="cuda") .normal_(mean=0.4, std=0.2) .reshape(head_num, batch_size, seq_len) .softmax(-1) .reshape(head_num, batch_size * seq_len) ) attn_out = torch.empty((batch_size, head_num, head_dim), dtype=dtype, device="cuda") kv_cache_start_loc = torch.zeros((batch_size,), dtype=torch.int32, device="cuda") kv_cache_seq_len = torch.zeros((batch_size,), dtype=torch.int32, device="cuda") kv_cache_loc = torch.zeros((batch_size, seq_len), dtype=torch.int32, device="cuda") for i in range(batch_size): kv_cache_start_loc[i] = i * seq_len kv_cache_seq_len[i] = seq_len kv_cache_loc[i] = i * seq_len + torch.arange(0, seq_len, dtype=torch.int32, device="cuda") token_attn_fwd_2(Prob, V, attn_out, kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len, seq_len) torch_out = torch_attn(V, Prob, batch_size, seq_len, head_num, head_dim).squeeze() o = attn_out print("max ", torch.max(torch.abs(torch_out - o))) print("mean ", torch.mean(torch.abs(torch_out - o))) assert torch.allclose(torch_out, o, atol=1e-2, rtol=0) if __name__ == "__main__": test_token_attn_2()