ColossalAI/examples/language/gpt/experiments/auto_offload/train_gpt_offload.py

105 lines
3.5 KiB
Python

import argparse
import time
import pytest
import torch
from model_zoo import GPTLMLoss, get_gpt2_components
from torch.utils._pytree import tree_map
import colossalai
from colossalai.auto_parallel.offload.amp_optimizer import AMPOptimizer
from colossalai.auto_parallel.offload.mem_optimize import memory_optimize
from colossalai.auto_parallel.offload.solver import NOT_NVML
from colossalai.fx.profiler import parameter_size
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import spawn
from colossalai.utils import get_current_device
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default="gpt2_medium")
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--solver_type", type=str, default="asyn")
parser.add_argument("--memory_budget", type=float, default=16)
return parser.parse_args()
@pytest.mark.skipif(NOT_NVML, reason="pynvml is not installed")
def train_gpt(args):
memory_budget = args.memory_budget * 1024 * 1024 * 1024
solver_type = args.solver_type
model_type = args.model_type
batch_size = args.batch_size
# build model
model_builder, data_gen = get_gpt2_components(model_type=model_type, batch_size=batch_size)
label = torch.randint(
low=0,
high=128,
size=(
64,
8,
),
device=get_current_device(),
)
criterion = GPTLMLoss()
start_time = time.time()
model = model_builder()
model.train()
param_size = parameter_size(model) / 1024**2 / 2
init_time = time.time() - start_time
print(f"init_param_size={param_size:.3f} MB | init_model_time={init_time:.3f} s")
data_args = data_gen(device="cpu")
wrap_fn = lambda x: x.to(dtype=torch.half) if isinstance(x, torch.Tensor) and torch.is_floating_point(x) else x
data_args = tree_map(wrap_fn, data_args)
start_time = time.time()
model = memory_optimize(model, data_args, memory_budget, solver_type)
solver_time = time.time() - start_time
print(f"solver_time={solver_time:.3f} s")
hybrid_optimizer = HybridAdam(model.model.parameters(), lr=1e-3)
optim = AMPOptimizer(hybrid_optimizer, model)
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
time_list = []
data_args = data_gen(device="cuda")
data_args = tree_map(wrap_fn, data_args)
for step in range(10):
optim.zero_grad()
torch.cuda.synchronize()
start_time = time.time()
loss = criterion(model(**data_args), label)
optim.backward(loss)
torch.cuda.synchronize()
time_list.append(time.time() - start_time)
optim.step()
torch.cuda.synchronize()
exec_time = sum(sorted(time_list)[:5]) / 5
runtime_peak_mem_alc = torch.cuda.max_memory_allocated() / 1024**2
runtime_peak_mem_res = torch.cuda.max_memory_reserved() / 1024**2
print(f"solver_type: {solver_type} | model_type: {model_type}")
print(
f"| exec_time={exec_time:.3f} s | param_size={param_size:.3f} MB "
f"| runtime_peak_mem_alc={runtime_peak_mem_alc:.3f} MB| runtime_peak_mem_res={runtime_peak_mem_res:.3f} MB|"
)
print(time_list)
def run(rank, world_size, port, args):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
train_gpt(args)
if __name__ == "__main__":
args = parse_args()
spawn(run, 1, args=args)