import argparse import time import pytest import torch from model_zoo import GPTLMLoss, get_gpt2_components from torch.utils._pytree import tree_map import colossalai from colossalai.auto_parallel.offload.amp_optimizer import AMPOptimizer from colossalai.auto_parallel.offload.mem_optimize import memory_optimize from colossalai.auto_parallel.offload.solver import NOT_NVML from colossalai.fx.profiler import parameter_size from colossalai.nn.optimizer import HybridAdam from colossalai.testing import spawn from colossalai.utils import get_current_device def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--model_type", type=str, default="gpt2_medium") parser.add_argument("--batch_size", type=int, default=64) parser.add_argument("--solver_type", type=str, default="asyn") parser.add_argument("--memory_budget", type=float, default=16) return parser.parse_args() @pytest.mark.skipif(NOT_NVML, reason="pynvml is not installed") def train_gpt(args): memory_budget = args.memory_budget * 1024 * 1024 * 1024 solver_type = args.solver_type model_type = args.model_type batch_size = args.batch_size # build model model_builder, data_gen = get_gpt2_components(model_type=model_type, batch_size=batch_size) label = torch.randint( low=0, high=128, size=( 64, 8, ), device=get_current_device(), ) criterion = GPTLMLoss() start_time = time.time() model = model_builder() model.train() param_size = parameter_size(model) / 1024**2 / 2 init_time = time.time() - start_time print(f"init_param_size={param_size:.3f} MB | init_model_time={init_time:.3f} s") data_args = data_gen(device="cpu") wrap_fn = lambda x: x.to(dtype=torch.half) if isinstance(x, torch.Tensor) and torch.is_floating_point(x) else x data_args = tree_map(wrap_fn, data_args) start_time = time.time() model = memory_optimize(model, data_args, memory_budget, solver_type) solver_time = time.time() - start_time print(f"solver_time={solver_time:.3f} s") hybrid_optimizer = HybridAdam(model.model.parameters(), lr=1e-3) optim = AMPOptimizer(hybrid_optimizer, model) torch.cuda.empty_cache() torch.cuda.synchronize() torch.cuda.reset_peak_memory_stats() time_list = [] data_args = data_gen(device="cuda") data_args = tree_map(wrap_fn, data_args) for step in range(10): optim.zero_grad() torch.cuda.synchronize() start_time = time.time() loss = criterion(model(**data_args), label) optim.backward(loss) torch.cuda.synchronize() time_list.append(time.time() - start_time) optim.step() torch.cuda.synchronize() exec_time = sum(sorted(time_list)[:5]) / 5 runtime_peak_mem_alc = torch.cuda.max_memory_allocated() / 1024**2 runtime_peak_mem_res = torch.cuda.max_memory_reserved() / 1024**2 print(f"solver_type: {solver_type} | model_type: {model_type}") print( f"| exec_time={exec_time:.3f} s | param_size={param_size:.3f} MB " f"| runtime_peak_mem_alc={runtime_peak_mem_alc:.3f} MB| runtime_peak_mem_res={runtime_peak_mem_res:.3f} MB|" ) print(time_list) def run(rank, world_size, port, args): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") train_gpt(args) if __name__ == "__main__": args = parse_args() spawn(run, 1, args=args)