mirror of https://github.com/hpcaitech/ColossalAI
3.2 KiB
3.2 KiB
3D 张量并行
作者: Zhengda Bian, Yongbin Li
前置教程
示例代码
相关论文
引言
3D 张量并行 是一种将神经网络模型的计算并行化,以期望获得最佳通信成本优化的方法。
我们还是以线性层 Y = XA
为例。
给定 P=q \times q \times q
个处理器(必要条件), 如 q=2
, 我们把输入 X
和权重 A
划分为
\left[\begin{matrix}
X_{000} & X_{001} \\
X_{010} & X_{011} \\
X_{100} & X_{101} \\
X_{110} & X_{111} \end{matrix}
\right]
\text{~and~}
\left[\begin{matrix}
A_{000} & A_{001} & A_{010} & A_{011} \\
A_{100} & A_{101} & A_{110} & A_{111} \end{matrix}
\right]
\text{~respectively,}$$
其中每个 $X_{ijl}$ 和 $A_{lji}$ 都被存储在处理器 $(i,j,l)$ 上, 如下图所示。
<center>
<img src="https://s2.loli.net/2022/02/17/JevO6SED5z4PFdp.png" width = "200" height = "250" />
<img src="https://s2.loli.net/2022/02/17/qvtwjdfNXMAb4nF.png" width = "200" height = "250" />
<img src="https://s2.loli.net/2022/02/17/WFzm2N4IwKf1jXZ.png" width = "200" height = "250" />
<img src="https://s2.loli.net/2022/02/17/r2dZQ4hKxwTuIv6.png" width = "200" height = "250" />
</center>
然后我们在 $(i, 0...q,l)$ 上收集 $X_{ijl}$, 以及在$(0...q, j, l)$ 上收集 $A_{lji}$。
因此,我们在每个处理器 $(i,j,l)$ 上都有 $X_{il}$ 和 $A_{lj}$ 以获得 $X_{il}A_{lj}$。
最后,我们在 $(i, j, 0...q)$ 对结果进行 reduce-scatter 得到 $Y_{ijl}$, 形成
Y= \left[\begin{matrix} Y_{000} & Y_{001} \ Y_{010} & Y_{011} \ Y_{100} & Y_{101} \ Y_{110} & Y_{111} \end{matrix} \right].
我们还需要注意,在后向传播中, 我们需要 all-gather 梯度 $\dot{Y_{ijl}}$, 然后 reduce-scatter 梯度 $\dot{X_{il}}=\dot{Y_{ij}}A_{lj}^T$ and $\dot{A_{lj}}=X_{il}^T\dot{Y_{ij}}$。
## 效率
给定 $P=q \times q \times q$ 个处理器, 我们展现理论上的计算和内存成本,以及基于环形算法的3D张量并行的前向和后向的通信成本。
| 计算 | 内存 (参数) | 内存 (activations) | 通信 (带宽) | 通信 (时延) |
| :-: | :-: | :-: | :-: | :-: |
| $O(1/q^3)$ | $O(1/q^3)$ | $O(1/q^3)$ | $O(6(q-1)/q^3)$ | $O(6(q-1))$ |
## 使用
ColossalAI的最新版本还暂不支持3D张量并行,但3D张量并行的功能会在未来的版本被集成入`Shardformer`中。关于`Shardformer`的原理和用法细节请参考当前目录下的Shardformer文档。
对于老版本ColossalAI的用户,3D张量并行的用法请参考[ColossalAI-Examples - 3D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)。
<!-- doc-test-command: echo -->