ColossalAI/tests/test_moe/test_moe_hybrid_zero.py

99 lines
3.6 KiB
Python

import pytest
import torch
import torch.distributed as dist
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import LowLevelZeroPlugin
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
from colossalai.moe.manager import MOE_MANAGER
from colossalai.tensor.moe_tensor.api import is_moe_tensor
from colossalai.testing import rerun_if_address_is_in_use, spawn
from tests.test_moe.moe_utils import MoeModel
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if isinstance(model, LowLevelZeroModel):
optimizer.backward(loss / 2)
else:
loss.backward()
return y
def run_zero_optim_test(local_rank, world_size, stage=1):
criterion = torch.nn.CrossEntropyLoss()
data = torch.randn(16, 4).cuda()
label = torch.randint(0, 4, (16,)).cuda()
MOE_MANAGER.__init__()
MOE_MANAGER.setup(parallel=None)
torch_model = MoeModel()
torch_optimizer = torch.optim.Adam(torch_model.parameters())
torch_model = torch_model.cuda()
MOE_MANAGER.__init__()
MOE_MANAGER.setup(max_ep_size=2, use_ep_inside=False, parallel="EP")
zero_model = MoeModel()
extra_dp_group = MOE_MANAGER.parallel_info_dict[2].dp_group
ep_rank = dist.get_rank(MOE_MANAGER.parallel_info_dict[2].ep_group)
ep_size = MOE_MANAGER.parallel_info_dict[2].ep_size
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
if is_moe_tensor(zero_param):
num_expert = torch_param.data.shape[0]
zero_param.data.copy_(
torch_param.data[ep_rank * (num_expert // ep_size) : (ep_rank + 1) * (num_expert // ep_size)]
.detach()
.clone()
)
else:
zero_param.data.copy_(torch_param.data.detach().clone())
zero_optimizer = torch.optim.Adam(zero_model.parameters())
plugin = LowLevelZeroPlugin(stage=stage, precision="fp32")
plugin.zero_optim_kwargs["moe_extra_dp_process_group"] = extra_dp_group
booster = Booster(plugin=plugin)
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
run_fwd_bwd(torch_model, data, label, criterion, None)
torch_optimizer.step()
run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
zero_optimizer.step()
for (torch_name, torch_param), (zero_name, zero_param) in zip(
torch_model.named_parameters(), zero_model.named_parameters()
):
if is_moe_tensor(zero_param):
num_expert = torch_param.data.shape[0]
torch_param.data = torch_param.data[
ep_rank * (num_expert // ep_size) : (ep_rank + 1) * (num_expert // ep_size)
]
assert torch.allclose(
torch_param.data, zero_param.data, atol=1e-4
), f"{torch_name}\ntorch_param {torch_param.data}\nzero_param {zero_param.data}"
def run_dist(rank, world_size, port):
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_zero_optim_test(rank, world_size, stage=1)
run_zero_optim_test(rank, world_size, stage=2)
@pytest.mark.skip(reason="moe need to be refactored")
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [4])
@rerun_if_address_is_in_use()
def test_moe_zero_optim(world_size):
spawn(run_dist, world_size)
if __name__ == "__main__":
test_moe_zero_optim(world_size=4)