import pytest import torch import torch.distributed as dist import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import LowLevelZeroPlugin from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel from colossalai.moe.manager import MOE_MANAGER from colossalai.tensor.moe_tensor.api import is_moe_tensor from colossalai.testing import rerun_if_address_is_in_use, spawn from tests.test_moe.moe_utils import MoeModel def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False): model.train() with torch.cuda.amp.autocast(enabled=enable_autocast): if criterion: y = model(data) loss = criterion(y, label) else: loss = model(data, label) loss = loss.float() if isinstance(model, LowLevelZeroModel): optimizer.backward(loss / 2) else: loss.backward() return y def run_zero_optim_test(local_rank, world_size, stage=1): criterion = torch.nn.CrossEntropyLoss() data = torch.randn(16, 4).cuda() label = torch.randint(0, 4, (16,)).cuda() MOE_MANAGER.__init__() MOE_MANAGER.setup(parallel=None) torch_model = MoeModel() torch_optimizer = torch.optim.Adam(torch_model.parameters()) torch_model = torch_model.cuda() MOE_MANAGER.__init__() MOE_MANAGER.setup(max_ep_size=2, use_ep_inside=False, parallel="EP") zero_model = MoeModel() extra_dp_group = MOE_MANAGER.parallel_info_dict[2].dp_group ep_rank = dist.get_rank(MOE_MANAGER.parallel_info_dict[2].ep_group) ep_size = MOE_MANAGER.parallel_info_dict[2].ep_size for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()): if is_moe_tensor(zero_param): num_expert = torch_param.data.shape[0] zero_param.data.copy_( torch_param.data[ep_rank * (num_expert // ep_size) : (ep_rank + 1) * (num_expert // ep_size)] .detach() .clone() ) else: zero_param.data.copy_(torch_param.data.detach().clone()) zero_optimizer = torch.optim.Adam(zero_model.parameters()) plugin = LowLevelZeroPlugin(stage=stage, precision="fp32") plugin.zero_optim_kwargs["moe_extra_dp_process_group"] = extra_dp_group booster = Booster(plugin=plugin) zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer) run_fwd_bwd(torch_model, data, label, criterion, None) torch_optimizer.step() run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) zero_optimizer.step() for (torch_name, torch_param), (zero_name, zero_param) in zip( torch_model.named_parameters(), zero_model.named_parameters() ): if is_moe_tensor(zero_param): num_expert = torch_param.data.shape[0] torch_param.data = torch_param.data[ ep_rank * (num_expert // ep_size) : (ep_rank + 1) * (num_expert // ep_size) ] assert torch.allclose( torch_param.data, zero_param.data, atol=1e-4 ), f"{torch_name}\ntorch_param {torch_param.data}\nzero_param {zero_param.data}" def run_dist(rank, world_size, port): colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") run_zero_optim_test(rank, world_size, stage=1) run_zero_optim_test(rank, world_size, stage=2) @pytest.mark.skip(reason="moe need to be refactored") @pytest.mark.dist @pytest.mark.parametrize("world_size", [4]) @rerun_if_address_is_in_use() def test_moe_zero_optim(world_size): spawn(run_dist, world_size) if __name__ == "__main__": test_moe_zero_optim(world_size=4)