mirror of https://github.com/hpcaitech/ColossalAI
df5e9c53cf
* Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com> |
||
---|---|---|
.. | ||
README.md | ||
ray_job_script.py | ||
train_prompts_on_ray.py |
README.md
⚠️ This content may be outdated since the major update of Colossal Chat. We will update this content soon.
ColossalAI on Ray
Abstract
This is an experimental effort to run ColossalAI Chat training on Ray
How to use?
1. Setup Ray clusters
Please follow the official Ray cluster setup instructions to setup an cluster with GPU support. Record the cluster's api server endpoint, it should be something similar to http://your.head.node.addrees:8265
2. Clone repo
Clone this project:
git clone https://github.com/hpcaitech/ColossalAI.git
3. Submit the ray job
python applications/Chat/examples/community/ray/ray_job_script.py http://your.head.node.addrees:8265
4. View your job on the Ray Dashboard
Open your ray cluster dashboard http://your.head.node.addrees:8265 to view your submitted training job.