ColossalAI/tests/test_auto_parallel/test_solver_with_mlp.py

94 lines
3.7 KiB
Python

import torch
from torch.fx import GraphModule
import torch.nn as nn
import pytest
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.device.device_mesh import DeviceMesh
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
from colossalai.auto_parallel.solver.cost_graph import CostGraph
from copy import deepcopy
from colossalai.auto_parallel.solver import Solver
from torchvision.models import resnet34, resnet50
from colossalai.auto_parallel.solver.constants import *
from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser
from colossalai.auto_parallel.solver.options import SolverOptions
class MLP(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.linear1 = torch.nn.Linear(dim, dim * 4)
self.linear2 = torch.nn.Linear(dim * 4, dim)
self.dropout = torch.nn.Dropout(0)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.linear1(x)
x = self.dropout(x)
x = self.relu(x)
x = self.linear2(x)
return x
@pytest.mark.skip("for higher testing speed")
def test_cost_graph():
physical_mesh_id = torch.arange(0, 8)
mesh_shape = (2, 4)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
shape_consistency_manager = ShapeConsistencyManager()
tracer = ColoTracer()
model = MLP(32)
input_sample = {'x': torch.rand(16, 32).to('meta')}
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %linear1 : [#users=1] = call_module[target=linear1](args = (%x,), kwargs = {})
# %dropout : [#users=1] = call_module[target=dropout](args = (%linear1,), kwargs = {})
# %relu : [#users=1] = call_module[target=relu](args = (%dropout,), kwargs = {})
# %linear2 : [#users=1] = call_module[target=linear2](args = (%relu,), kwargs = {})
# return linear2
graph = tracer.trace(root=model, meta_args=input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
graph_analyser = GraphAnalyser(gm)
liveness_list = graph_analyser.liveness_analysis()
solver_options = SolverOptions(fast=True)
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
strategies_constructor.build_strategies_and_cost()
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
cost_graph.simplify_graph()
# # megatron mode if no memory constraints
# solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser)
# all sharding on out feature dim if memory budget is not sufficient for megatron mode
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser, memory_budget=5500.0)
ret = solver.call_solver_serialized_args()
strategies_list = list(ret[0])
computation_cost = 0
communication_cost = 0
memory_cost = 0
for index, node in enumerate(graph.nodes):
print(node.name, node.strategies_vector[strategies_list[index]].name)
computation_cost += node.strategies_vector[strategies_list[index]].compute_cost
communication_cost += node.strategies_vector[strategies_list[index]].communication_cost
node_memory_cost = node.strategies_vector[strategies_list[index]].memory_cost
if isinstance(node_memory_cost, tuple):
node_memory_cost = node_memory_cost[0]
memory_cost += node_memory_cost
print(f'computation cost is {computation_cost}')
print(f'communication cost is {communication_cost}')
print(f'memory cost is {memory_cost}')
if __name__ == '__main__':
test_cost_graph()