import torch from torch.fx import GraphModule import torch.nn as nn import pytest from colossalai.fx.tracer.tracer import ColoTracer from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.device.device_mesh import DeviceMesh from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor from colossalai.auto_parallel.solver.cost_graph import CostGraph from copy import deepcopy from colossalai.auto_parallel.solver import Solver from torchvision.models import resnet34, resnet50 from colossalai.auto_parallel.solver.constants import * from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser from colossalai.auto_parallel.solver.options import SolverOptions class MLP(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.linear1 = torch.nn.Linear(dim, dim * 4) self.linear2 = torch.nn.Linear(dim * 4, dim) self.dropout = torch.nn.Dropout(0) self.relu = torch.nn.ReLU() def forward(self, x): x = self.linear1(x) x = self.dropout(x) x = self.relu(x) x = self.linear2(x) return x @pytest.mark.skip("for higher testing speed") def test_cost_graph(): physical_mesh_id = torch.arange(0, 8) mesh_shape = (2, 4) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) shape_consistency_manager = ShapeConsistencyManager() tracer = ColoTracer() model = MLP(32) input_sample = {'x': torch.rand(16, 32).to('meta')} # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %linear1 : [#users=1] = call_module[target=linear1](args = (%x,), kwargs = {}) # %dropout : [#users=1] = call_module[target=dropout](args = (%linear1,), kwargs = {}) # %relu : [#users=1] = call_module[target=relu](args = (%dropout,), kwargs = {}) # %linear2 : [#users=1] = call_module[target=linear2](args = (%relu,), kwargs = {}) # return linear2 graph = tracer.trace(root=model, meta_args=input_sample) gm = GraphModule(model, graph, model.__class__.__name__) gm.recompile() graph_analyser = GraphAnalyser(gm) liveness_list = graph_analyser.liveness_analysis() solver_options = SolverOptions(fast=True) strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) strategies_constructor.build_strategies_and_cost() cost_graph = CostGraph(strategies_constructor.leaf_strategies) cost_graph.simplify_graph() # # megatron mode if no memory constraints # solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser) # all sharding on out feature dim if memory budget is not sufficient for megatron mode solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser, memory_budget=5500.0) ret = solver.call_solver_serialized_args() strategies_list = list(ret[0]) computation_cost = 0 communication_cost = 0 memory_cost = 0 for index, node in enumerate(graph.nodes): print(node.name, node.strategies_vector[strategies_list[index]].name) computation_cost += node.strategies_vector[strategies_list[index]].compute_cost communication_cost += node.strategies_vector[strategies_list[index]].communication_cost node_memory_cost = node.strategies_vector[strategies_list[index]].memory_cost if isinstance(node_memory_cost, tuple): node_memory_cost = node_memory_cost[0] memory_cost += node_memory_cost print(f'computation cost is {computation_cost}') print(f'communication cost is {communication_cost}') print(f'memory cost is {memory_cost}') if __name__ == '__main__': test_cost_graph()