mirror of https://github.com/hpcaitech/ColossalAI
232 lines
7.1 KiB
Python
232 lines
7.1 KiB
Python
import dataclasses
|
|
from enum import Enum, auto
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
class SeparatorStyle(Enum):
|
|
ADD_BOS_EOS_TOKEN = auto()
|
|
ALPACA = auto()
|
|
PLAIN = auto()
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class Conversation:
|
|
system: str
|
|
roles: List[str]
|
|
messages: List[List[str]]
|
|
offset: int
|
|
sep_style: SeparatorStyle = SeparatorStyle.ADD_BOS_EOS_TOKEN
|
|
sep: str = "</s>"
|
|
|
|
def clear(self):
|
|
self.messages = []
|
|
|
|
def get_prompt(self):
|
|
if self.sep_style == SeparatorStyle.ADD_BOS_EOS_TOKEN:
|
|
ret = self.system
|
|
for role, message in self.messages:
|
|
if message:
|
|
ret += role + ": " + "<s>" + message + self.sep
|
|
else:
|
|
ret += role + ": " + "<s>"
|
|
return ret
|
|
elif self.sep_style == SeparatorStyle.ALPACA:
|
|
ret = self.system + self.sep
|
|
for role, message in self.messages:
|
|
if message:
|
|
ret += role + ":\n" + message + self.sep
|
|
else:
|
|
ret += role + ":"
|
|
return ret
|
|
elif self.sep_style == SeparatorStyle.PLAIN:
|
|
ret = self.system
|
|
for role, message in self.messages:
|
|
if message:
|
|
ret += message
|
|
else:
|
|
ret += ""
|
|
return ret
|
|
else:
|
|
raise ValueError(f"Invalid style: {self.sep_style}")
|
|
|
|
def get_prompt_with_target(self, target):
|
|
prompt = self.get_prompt()
|
|
prompt_with_target = []
|
|
|
|
# Some dataset provides multiple target answers.
|
|
# This will make it difficult when we calculate loss.
|
|
# We convert target into list[str] first if the question only has one target answer.
|
|
target_answers = []
|
|
if isinstance(target, str):
|
|
target_answers = [target]
|
|
else:
|
|
target_answers = target
|
|
|
|
for target_answer in target_answers:
|
|
if self.sep_style == SeparatorStyle.ADD_BOS_EOS_TOKEN:
|
|
prompt_with_target.append(prompt + target_answer)
|
|
elif self.sep_style == SeparatorStyle.ALPACA:
|
|
prompt_with_target.append(prompt + target_answer)
|
|
elif self.sep_style == SeparatorStyle.PLAIN:
|
|
prompt_with_target.append(prompt + target_answer)
|
|
else:
|
|
raise ValueError(f"Invalid style: {self.sep_style}")
|
|
|
|
return prompt_with_target
|
|
|
|
def save_prompt(self):
|
|
if self.sep_style == SeparatorStyle.ADD_BOS_EOS_TOKEN:
|
|
ret = self.system
|
|
for role, message in self.messages:
|
|
if message:
|
|
ret += role + ": " + "<s>" + message + "</s>\n"
|
|
else:
|
|
ret += role + ": " + "<s>"
|
|
return ret
|
|
else:
|
|
raise ValueError(f"Invalid style: {self.sep_style}")
|
|
|
|
def append_message(self, role, message):
|
|
self.messages.append([role, message])
|
|
|
|
def copy(self):
|
|
return Conversation(
|
|
system=self.system,
|
|
roles=self.roles,
|
|
messages=[[x, y] for x, y in self.messages],
|
|
offset=self.offset,
|
|
sep_style=self.sep_style,
|
|
sep=self.sep,
|
|
)
|
|
|
|
def dict(self):
|
|
return {
|
|
"system": self.system,
|
|
"roles": self.roles,
|
|
"messages": self.messages,
|
|
"offset": self.offset,
|
|
"sep_style": self.sep_style,
|
|
"sep": self.sep,
|
|
}
|
|
|
|
|
|
def get_few_shot_prefix(
|
|
conv: Conversation, few_shot_data: List[str], tokenizer: Optional[AutoTokenizer], language: str, max_tokens: int
|
|
) -> str:
|
|
"""
|
|
Get few shot prefix.
|
|
|
|
Args:
|
|
conv: Conversation template.
|
|
few_shot_examples: Few shot examples to generate few shot prompt prefix.
|
|
|
|
Returns:
|
|
Few shot prompt prefix.
|
|
"""
|
|
|
|
if language == "English":
|
|
few_shot_prefix = f"The following are answers for questions in an exam.\n\n"
|
|
elif language == "Chinese":
|
|
few_shot_prefix = f"以下是考试中各个问题的答案。\n\n"
|
|
|
|
output = None
|
|
for i in range(len(few_shot_data)):
|
|
few_shot_prefix = few_shot_prefix + few_shot_data[i] + "\n\n"
|
|
|
|
if len(tokenizer([few_shot_prefix]).input_ids[0]) <= max_tokens:
|
|
output = few_shot_prefix
|
|
else:
|
|
break
|
|
|
|
return output if output is not None else few_shot_prefix
|
|
|
|
|
|
def get_batch_prompt(
|
|
conv: Conversation,
|
|
batch: List[Dict],
|
|
few_shot_data: List[str],
|
|
tokenizer: Optional[AutoTokenizer],
|
|
language: Optional[str],
|
|
model_max_length: Optional[int],
|
|
) -> Tuple[List[Dict], List[Dict]]:
|
|
"""
|
|
Get batch prompt and target.
|
|
|
|
Args:
|
|
conv: Conversation template.
|
|
batch: Batch data to generate prompt from.
|
|
few_shot_data: Few shot data to generate few shot prompt prefix.
|
|
|
|
Returns:
|
|
Tuple containg batch prompt and target.
|
|
|
|
"""
|
|
|
|
batch_prompt = []
|
|
batch_target = []
|
|
|
|
if isinstance(batch[0], dict):
|
|
for b in batch:
|
|
few_shot_prefix = ""
|
|
if few_shot_data is not None:
|
|
# For few-shot, only need input. Otherwise use instruction (in AGIEval).
|
|
query_text = b["input"] if b.get("input", "") != "" else b["instruction"]
|
|
|
|
if isinstance(b["target"], str):
|
|
zero_shot_prompt = query_text + b["target"]
|
|
max_tokens = model_max_length - len(tokenizer([zero_shot_prompt]).input_ids[0])
|
|
else:
|
|
raise Exception("When using few-shot, target answer should be a string.")
|
|
|
|
few_shot_prefix = get_few_shot_prefix(conv, few_shot_data, tokenizer, language, max_tokens)
|
|
else:
|
|
query_text = b["instruction"] + "\n\n" + b["input"] if b.get("input", "") != "" else b["instruction"]
|
|
|
|
conv.append_message(conv.roles[0], few_shot_prefix + query_text)
|
|
conv.append_message(conv.roles[1], None)
|
|
|
|
batch_prompt.append(conv.get_prompt())
|
|
|
|
target = b["target"]
|
|
if isinstance(b["target"], str):
|
|
target = [target]
|
|
|
|
batch_target.append(target)
|
|
|
|
conv.clear()
|
|
|
|
return batch_prompt, batch_target
|
|
|
|
|
|
conv_coati = Conversation(
|
|
system="A chat between a curious human and an artificial intelligence assistant. "
|
|
"The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
|
|
roles=("Human", "Assistant"),
|
|
messages=[],
|
|
offset=0,
|
|
sep_style=SeparatorStyle.ADD_BOS_EOS_TOKEN,
|
|
sep="</s>",
|
|
)
|
|
|
|
conv_alpaca = Conversation(
|
|
system="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
|
|
roles=("### Instruction", "### Response"),
|
|
messages=[],
|
|
offset=0,
|
|
sep_style=SeparatorStyle.ALPACA,
|
|
sep="\n\n",
|
|
)
|
|
|
|
conv_plain = Conversation(
|
|
system="",
|
|
roles=("", ""),
|
|
messages=[],
|
|
offset=0,
|
|
sep_style=SeparatorStyle.PLAIN,
|
|
sep="",
|
|
)
|
|
|
|
prompt_templates = {"coati": conv_coati, "alpaca": conv_alpaca, "plain": conv_plain}
|