ColossalAI/applications/ColossalEval/colossal_eval/utils/conversation.py

232 lines
7.1 KiB
Python
Raw Normal View History

import dataclasses
from enum import Enum, auto
from typing import Dict, List, Optional, Tuple
from transformers import AutoTokenizer
class SeparatorStyle(Enum):
ADD_BOS_EOS_TOKEN = auto()
ALPACA = auto()
PLAIN = auto()
@dataclasses.dataclass
class Conversation:
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.ADD_BOS_EOS_TOKEN
sep: str = "</s>"
def clear(self):
self.messages = []
def get_prompt(self):
if self.sep_style == SeparatorStyle.ADD_BOS_EOS_TOKEN:
ret = self.system
for role, message in self.messages:
if message:
ret += role + ": " + "<s>" + message + self.sep
else:
ret += role + ": " + "<s>"
return ret
elif self.sep_style == SeparatorStyle.ALPACA:
ret = self.system + self.sep
for role, message in self.messages:
if message:
ret += role + ":\n" + message + self.sep
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.PLAIN:
ret = self.system
for role, message in self.messages:
if message:
ret += message
else:
ret += ""
return ret
else:
raise ValueError(f"Invalid style: {self.sep_style}")
def get_prompt_with_target(self, target):
prompt = self.get_prompt()
prompt_with_target = []
# Some dataset provides multiple target answers.
# This will make it difficult when we calculate loss.
# We convert target into list[str] first if the question only has one target answer.
target_answers = []
if isinstance(target, str):
target_answers = [target]
else:
target_answers = target
for target_answer in target_answers:
if self.sep_style == SeparatorStyle.ADD_BOS_EOS_TOKEN:
prompt_with_target.append(prompt + target_answer)
elif self.sep_style == SeparatorStyle.ALPACA:
prompt_with_target.append(prompt + target_answer)
elif self.sep_style == SeparatorStyle.PLAIN:
prompt_with_target.append(prompt + target_answer)
else:
raise ValueError(f"Invalid style: {self.sep_style}")
return prompt_with_target
def save_prompt(self):
if self.sep_style == SeparatorStyle.ADD_BOS_EOS_TOKEN:
ret = self.system
for role, message in self.messages:
if message:
ret += role + ": " + "<s>" + message + "</s>\n"
else:
ret += role + ": " + "<s>"
return ret
else:
raise ValueError(f"Invalid style: {self.sep_style}")
def append_message(self, role, message):
self.messages.append([role, message])
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
)
def dict(self):
return {
"system": self.system,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep_style": self.sep_style,
"sep": self.sep,
}
def get_few_shot_prefix(
conv: Conversation, few_shot_data: List[str], tokenizer: Optional[AutoTokenizer], language: str, max_tokens: int
) -> str:
"""
Get few shot prefix.
Args:
conv: Conversation template.
few_shot_examples: Few shot examples to generate few shot prompt prefix.
Returns:
Few shot prompt prefix.
"""
if language == "English":
few_shot_prefix = f"The following are answers for questions in an exam.\n\n"
elif language == "Chinese":
few_shot_prefix = f"以下是考试中各个问题的答案。\n\n"
output = None
for i in range(len(few_shot_data)):
few_shot_prefix = few_shot_prefix + few_shot_data[i] + "\n\n"
if len(tokenizer([few_shot_prefix]).input_ids[0]) <= max_tokens:
output = few_shot_prefix
else:
break
return output if output is not None else few_shot_prefix
def get_batch_prompt(
conv: Conversation,
batch: List[Dict],
few_shot_data: List[str],
tokenizer: Optional[AutoTokenizer],
language: Optional[str],
model_max_length: Optional[int],
) -> Tuple[List[Dict], List[Dict]]:
"""
Get batch prompt and target.
Args:
conv: Conversation template.
batch: Batch data to generate prompt from.
few_shot_data: Few shot data to generate few shot prompt prefix.
Returns:
Tuple containg batch prompt and target.
"""
batch_prompt = []
batch_target = []
if isinstance(batch[0], dict):
for b in batch:
few_shot_prefix = ""
if few_shot_data is not None:
# For few-shot, only need input. Otherwise use instruction (in AGIEval).
query_text = b["input"] if b.get("input", "") != "" else b["instruction"]
if isinstance(b["target"], str):
zero_shot_prompt = query_text + b["target"]
max_tokens = model_max_length - len(tokenizer([zero_shot_prompt]).input_ids[0])
else:
raise Exception("When using few-shot, target answer should be a string.")
few_shot_prefix = get_few_shot_prefix(conv, few_shot_data, tokenizer, language, max_tokens)
else:
query_text = b["instruction"] + "\n\n" + b["input"] if b.get("input", "") != "" else b["instruction"]
conv.append_message(conv.roles[0], few_shot_prefix + query_text)
conv.append_message(conv.roles[1], None)
batch_prompt.append(conv.get_prompt())
target = b["target"]
if isinstance(b["target"], str):
target = [target]
batch_target.append(target)
conv.clear()
return batch_prompt, batch_target
conv_coati = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
roles=("Human", "Assistant"),
messages=[],
offset=0,
sep_style=SeparatorStyle.ADD_BOS_EOS_TOKEN,
sep="</s>",
)
conv_alpaca = Conversation(
system="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
roles=("### Instruction", "### Response"),
messages=[],
offset=0,
sep_style=SeparatorStyle.ALPACA,
sep="\n\n",
)
conv_plain = Conversation(
system="",
roles=("", ""),
messages=[],
offset=0,
sep_style=SeparatorStyle.PLAIN,
sep="",
)
prompt_templates = {"coati": conv_coati, "alpaca": conv_alpaca, "plain": conv_plain}