ColossalAI/examples/language/gpt/titans/dataset/webtext.py

44 lines
1.6 KiB
Python

import json
import os
from typing import Optional
import torch
from torch.utils.data import Dataset
from transformers import GPT2Tokenizer
from colossalai.legacy.registry import DATASETS
@DATASETS.register_module
class WebtextDataset(Dataset):
def __init__(self, path: Optional[str] = None, seq_len=1024) -> None:
super().__init__()
if path is not None:
root = os.path.dirname(path)
encoded_data_cache_path = os.path.join(root, f'gpt_webtext_{seq_len}.pt')
if os.path.isfile(encoded_data_cache_path):
seq_len_, data, attention_mask = torch.load(encoded_data_cache_path)
if seq_len_ == seq_len:
self.data = data
self.attention_mask = attention_mask
return
raw_data = []
with open(path) as f:
for line in f.readlines():
raw_data.append(json.loads(line)['text'])
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.unk_token
encoded_data = tokenizer(raw_data, padding=True, truncation=True, max_length=seq_len, return_tensors='pt')
self.data = encoded_data['input_ids']
self.attention_mask = encoded_data['attention_mask']
else:
self.data = torch.randint(0, 50257, (10240, seq_len))
self.attention_mask = torch.ones_like(self.data)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return {'input_ids': self.data[index], 'attention_mask': self.attention_mask[index]}, self.data[index]