2023-01-18 04:04:18 +00:00
|
|
|
import json
|
|
|
|
import os
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch.utils.data import Dataset
|
|
|
|
from transformers import GPT2Tokenizer
|
|
|
|
|
2023-09-04 11:56:42 +00:00
|
|
|
from colossalai.legacy.registry import DATASETS
|
2023-01-18 04:04:18 +00:00
|
|
|
|
|
|
|
|
|
|
|
@DATASETS.register_module
|
|
|
|
class WebtextDataset(Dataset):
|
|
|
|
|
|
|
|
def __init__(self, path: Optional[str] = None, seq_len=1024) -> None:
|
|
|
|
super().__init__()
|
|
|
|
if path is not None:
|
|
|
|
root = os.path.dirname(path)
|
|
|
|
encoded_data_cache_path = os.path.join(root, f'gpt_webtext_{seq_len}.pt')
|
|
|
|
if os.path.isfile(encoded_data_cache_path):
|
|
|
|
seq_len_, data, attention_mask = torch.load(encoded_data_cache_path)
|
|
|
|
if seq_len_ == seq_len:
|
|
|
|
self.data = data
|
|
|
|
self.attention_mask = attention_mask
|
|
|
|
return
|
|
|
|
raw_data = []
|
|
|
|
with open(path) as f:
|
|
|
|
for line in f.readlines():
|
|
|
|
raw_data.append(json.loads(line)['text'])
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
|
|
|
tokenizer.pad_token = tokenizer.unk_token
|
|
|
|
encoded_data = tokenizer(raw_data, padding=True, truncation=True, max_length=seq_len, return_tensors='pt')
|
|
|
|
self.data = encoded_data['input_ids']
|
|
|
|
self.attention_mask = encoded_data['attention_mask']
|
|
|
|
else:
|
|
|
|
self.data = torch.randint(0, 50257, (10240, seq_len))
|
|
|
|
self.attention_mask = torch.ones_like(self.data)
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.data)
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
return {'input_ids': self.data[index], 'attention_mask': self.attention_mask[index]}, self.data[index]
|