ColossalAI/colossalai/testing/comparison.py

104 lines
4.1 KiB
Python

from typing import Any, List, OrderedDict
import torch
import torch.distributed as dist
from torch import Tensor
from torch.distributed import ProcessGroup
from torch.testing import assert_close
def assert_equal(a: Tensor, b: Tensor):
assert torch.all(a == b), f'expected a and b to be equal but they are not, {a} vs {b}'
def assert_not_equal(a: Tensor, b: Tensor):
assert not torch.all(a == b), f'expected a and b to be not equal but they are, {a} vs {b}'
def assert_close_loose(a: Tensor, b: Tensor, rtol: float = 1e-3, atol: float = 1e-3):
assert_close(a, b, rtol=rtol, atol=atol)
def assert_equal_in_group(tensor: Tensor, process_group: ProcessGroup = None):
# all gather tensors from different ranks
world_size = dist.get_world_size(process_group)
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
dist.all_gather(tensor_list, tensor, group=process_group)
# check if they are equal one by one
for i in range(world_size - 1):
a = tensor_list[i]
b = tensor_list[i + 1]
assert torch.all(a == b), f'expected tensors on rank {i} and {i + 1} to be equal but they are not, {a} vs {b}'
def check_state_dict_equal(d1: OrderedDict, d2: OrderedDict, ignore_device: bool = True):
for k, v in d1.items():
if isinstance(v, dict):
check_state_dict_equal(v, d2[k])
elif isinstance(v, list):
for i in range(len(v)):
if isinstance(v[i], torch.Tensor):
if not ignore_device:
v[i] = v[i].to("cpu")
d2[k][i] = d2[k][i].to("cpu")
assert torch.equal(v[i], d2[k][i])
else:
assert v[i] == d2[k][i]
elif isinstance(v, torch.Tensor):
if not ignore_device:
v = v.to("cpu")
d2[k] = d2[k].to("cpu")
assert torch.equal(v, d2[k])
else:
assert v == d2[k]
def assert_hf_output_close(out1: Any,
out2: Any,
ignore_keys: List[str] = None,
track_name: str = "",
atol=1e-5,
rtol=1e-5):
"""
Check if two outputs from huggingface are equal.
Args:
out1 (Any): the first output
out2 (Any): the second output
ignore_keys (List[str]): the keys to ignore when comparing two dicts
track_name (str): the name of the value compared, used to track the path
"""
if isinstance(out1, dict) and isinstance(out2, dict):
# if two values are dict
# we recursively check the keys
assert set(out1.keys()) == set(out2.keys())
for k in out1.keys():
if ignore_keys is not None and k in ignore_keys:
continue
assert_hf_output_close(out1[k],
out2[k],
track_name=f"{track_name}.{k}",
ignore_keys=ignore_keys,
atol=atol,
rtol=rtol)
elif isinstance(out1, (list, tuple)) and isinstance(out2, (list, tuple)):
# if two values are list
# we recursively check the elements
assert len(out1) == len(out2)
for i in range(len(out1)):
assert_hf_output_close(out1[i],
out2[i],
track_name=f"{track_name}.{i}",
ignore_keys=ignore_keys,
atol=atol,
rtol=rtol)
elif isinstance(out1, Tensor) and isinstance(out2, Tensor):
if out1.shape != out2.shape:
raise AssertionError(f"{track_name}: shape mismatch: {out1.shape} vs {out2.shape}")
assert torch.allclose(
out1, out2, atol=atol, rtol=rtol
), f"{track_name}: tensor value mismatch\nvalue 1: {out1}\nvalue 2: {out2}, mean error: {torch.abs(out1 - out2).mean()}"
else:
assert out1 == out2, f"{track_name}: value mismatch.\nout1: {out1}\nout2: {out2}"