from typing import Any, List, OrderedDict import torch import torch.distributed as dist from torch import Tensor from torch.distributed import ProcessGroup from torch.testing import assert_close def assert_equal(a: Tensor, b: Tensor): assert torch.all(a == b), f'expected a and b to be equal but they are not, {a} vs {b}' def assert_not_equal(a: Tensor, b: Tensor): assert not torch.all(a == b), f'expected a and b to be not equal but they are, {a} vs {b}' def assert_close_loose(a: Tensor, b: Tensor, rtol: float = 1e-3, atol: float = 1e-3): assert_close(a, b, rtol=rtol, atol=atol) def assert_equal_in_group(tensor: Tensor, process_group: ProcessGroup = None): # all gather tensors from different ranks world_size = dist.get_world_size(process_group) tensor_list = [torch.empty_like(tensor) for _ in range(world_size)] dist.all_gather(tensor_list, tensor, group=process_group) # check if they are equal one by one for i in range(world_size - 1): a = tensor_list[i] b = tensor_list[i + 1] assert torch.all(a == b), f'expected tensors on rank {i} and {i + 1} to be equal but they are not, {a} vs {b}' def check_state_dict_equal(d1: OrderedDict, d2: OrderedDict, ignore_device: bool = True): for k, v in d1.items(): if isinstance(v, dict): check_state_dict_equal(v, d2[k]) elif isinstance(v, list): for i in range(len(v)): if isinstance(v[i], torch.Tensor): if not ignore_device: v[i] = v[i].to("cpu") d2[k][i] = d2[k][i].to("cpu") assert torch.equal(v[i], d2[k][i]) else: assert v[i] == d2[k][i] elif isinstance(v, torch.Tensor): if not ignore_device: v = v.to("cpu") d2[k] = d2[k].to("cpu") assert torch.equal(v, d2[k]) else: assert v == d2[k] def assert_hf_output_close(out1: Any, out2: Any, ignore_keys: List[str] = None, track_name: str = "", atol=1e-5, rtol=1e-5): """ Check if two outputs from huggingface are equal. Args: out1 (Any): the first output out2 (Any): the second output ignore_keys (List[str]): the keys to ignore when comparing two dicts track_name (str): the name of the value compared, used to track the path """ if isinstance(out1, dict) and isinstance(out2, dict): # if two values are dict # we recursively check the keys assert set(out1.keys()) == set(out2.keys()) for k in out1.keys(): if ignore_keys is not None and k in ignore_keys: continue assert_hf_output_close(out1[k], out2[k], track_name=f"{track_name}.{k}", ignore_keys=ignore_keys, atol=atol, rtol=rtol) elif isinstance(out1, (list, tuple)) and isinstance(out2, (list, tuple)): # if two values are list # we recursively check the elements assert len(out1) == len(out2) for i in range(len(out1)): assert_hf_output_close(out1[i], out2[i], track_name=f"{track_name}.{i}", ignore_keys=ignore_keys, atol=atol, rtol=rtol) elif isinstance(out1, Tensor) and isinstance(out2, Tensor): if out1.shape != out2.shape: raise AssertionError(f"{track_name}: shape mismatch: {out1.shape} vs {out2.shape}") assert torch.allclose( out1, out2, atol=atol, rtol=rtol ), f"{track_name}: tensor value mismatch\nvalue 1: {out1}\nvalue 2: {out2}, mean error: {torch.abs(out1 - out2).mean()}" else: assert out1 == out2, f"{track_name}: value mismatch.\nout1: {out1}\nout2: {out2}"