mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
44 lines
1.3 KiB
44 lines
1.3 KiB
import torch |
|
from timm.models.beit import Beit |
|
|
|
from colossalai.utils.cuda import get_current_device |
|
|
|
from .registry import non_distributed_component_funcs |
|
from .utils.dummy_data_generator import DummyDataGenerator |
|
|
|
|
|
class DummyDataLoader(DummyDataGenerator): |
|
img_size = 64 |
|
num_channel = 3 |
|
num_class = 10 |
|
batch_size = 4 |
|
|
|
def generate(self): |
|
data = torch.randn( |
|
( |
|
DummyDataLoader.batch_size, |
|
DummyDataLoader.num_channel, |
|
DummyDataLoader.img_size, |
|
DummyDataLoader.img_size, |
|
), |
|
device=get_current_device(), |
|
) |
|
label = torch.randint( |
|
low=0, high=DummyDataLoader.num_class, size=(DummyDataLoader.batch_size,), device=get_current_device() |
|
) |
|
return data, label |
|
|
|
|
|
@non_distributed_component_funcs.register(name="beit") |
|
def get_training_components(): |
|
def model_builder(checkpoint=False): |
|
model = Beit( |
|
img_size=DummyDataLoader.img_size, num_classes=DummyDataLoader.num_class, embed_dim=32, depth=2, num_heads=4 |
|
) |
|
return model |
|
|
|
trainloader = DummyDataLoader() |
|
testloader = DummyDataLoader() |
|
|
|
criterion = torch.nn.CrossEntropyLoss() |
|
return model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
|
|