Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

44 lines
1.3 KiB

import torch
from timm.models.beit import Beit
from colossalai.utils.cuda import get_current_device
from .registry import non_distributed_component_funcs
from .utils.dummy_data_generator import DummyDataGenerator
class DummyDataLoader(DummyDataGenerator):
img_size = 64
num_channel = 3
num_class = 10
batch_size = 4
def generate(self):
data = torch.randn(
(
DummyDataLoader.batch_size,
DummyDataLoader.num_channel,
DummyDataLoader.img_size,
DummyDataLoader.img_size,
),
device=get_current_device(),
)
label = torch.randint(
low=0, high=DummyDataLoader.num_class, size=(DummyDataLoader.batch_size,), device=get_current_device()
)
return data, label
@non_distributed_component_funcs.register(name="beit")
def get_training_components():
def model_builder(checkpoint=False):
model = Beit(
img_size=DummyDataLoader.img_size, num_classes=DummyDataLoader.num_class, embed_dim=32, depth=2, num_heads=4
)
return model
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
return model_builder, trainloader, testloader, torch.optim.Adam, criterion