|
|
|
import torch
|
|
|
|
from timm.models.beit import Beit
|
|
|
|
|
|
|
|
from colossalai.utils.cuda import get_current_device
|
|
|
|
|
|
|
|
from .registry import non_distributed_component_funcs
|
|
|
|
from .utils.dummy_data_generator import DummyDataGenerator
|
|
|
|
|
|
|
|
|
|
|
|
class DummyDataLoader(DummyDataGenerator):
|
|
|
|
img_size = 64
|
|
|
|
num_channel = 3
|
|
|
|
num_class = 10
|
|
|
|
batch_size = 4
|
|
|
|
|
|
|
|
def generate(self):
|
|
|
|
data = torch.randn(
|
|
|
|
(
|
|
|
|
DummyDataLoader.batch_size,
|
|
|
|
DummyDataLoader.num_channel,
|
|
|
|
DummyDataLoader.img_size,
|
|
|
|
DummyDataLoader.img_size,
|
|
|
|
),
|
|
|
|
device=get_current_device(),
|
|
|
|
)
|
|
|
|
label = torch.randint(
|
|
|
|
low=0, high=DummyDataLoader.num_class, size=(DummyDataLoader.batch_size,), device=get_current_device()
|
|
|
|
)
|
|
|
|
return data, label
|
|
|
|
|
|
|
|
|
|
|
|
@non_distributed_component_funcs.register(name="beit")
|
|
|
|
def get_training_components():
|
|
|
|
def model_builder(checkpoint=False):
|
|
|
|
model = Beit(
|
|
|
|
img_size=DummyDataLoader.img_size, num_classes=DummyDataLoader.num_class, embed_dim=32, depth=2, num_heads=4
|
|
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
|
|
trainloader = DummyDataLoader()
|
|
|
|
testloader = DummyDataLoader()
|
|
|
|
|
|
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
|
|
return model_builder, trainloader, testloader, torch.optim.Adam, criterion
|