mirror of https://github.com/hpcaitech/ColossalAI
250 lines
8.2 KiB
Markdown
250 lines
8.2 KiB
Markdown
<!-- doc-test-command: torchrun --standalone --nproc_per_node=1 nvme_offload.py -->
|
||
# NVMe offload
|
||
|
||
作者: Hongxin Liu
|
||
|
||
**前置教程:**
|
||
- [基于Chunk内存管理的零冗余优化器 (ZeRO)](../features/zero_with_chunk.md)
|
||
|
||
**相关论文**
|
||
|
||
- [ZeRO-Offload: Democratizing Billion-Scale Model Training](https://arxiv.org/abs/2101.06840)
|
||
- [ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning](https://arxiv.org/abs/2104.07857)
|
||
## 引言
|
||
|
||
如果模型具有`N`个参数,在使用 Adam 时,优化器状态具有`8N`个参数。对于十亿规模的模型,优化器状态至少需要 32 GB 内存。 GPU显存限制了我们可以训练的模型规模,这称为GPU显存墙。如果我们将优化器状态 offload 到磁盘,我们可以突破 GPU 内存墙。
|
||
|
||
我们实现了一个用户友好且高效的异步 Tensor I/O 库:[TensorNVMe](https://github.com/hpcaitech/TensorNVMe)。有了这个库,我们可以简单地实现 NVMe offload。
|
||
|
||
> 该库与各种磁盘(HDD、SATA SSD 和 NVMe SSD)兼容。由于 HDD 或 SATA SSD 的 I/O 带宽较低,建议仅在 NVMe 磁盘上使用此库。
|
||
|
||
在优化参数时,我们可以将优化过程分为三个阶段:读取、计算和 offload。我们以流水线的方式执行优化过程,这可以重叠计算和 I/O。
|
||
|
||
<figure style={{textAlign: "center"}}>
|
||
<img src="https://s2.loli.net/2022/08/16/CvRnowrsNyB4hza.jpg"/>
|
||
<figcaption>优化过程</figcaption>
|
||
</figure>
|
||
|
||
|
||
## 使用
|
||
|
||
首先,请确保您安装了 [TensorNVMe](https://github.com/hpcaitech/TensorNVMe):
|
||
|
||
```shell
|
||
pip install packaging
|
||
pip install tensornvme
|
||
```
|
||
|
||
我们为 Adam ([CPUAdam](https://colossalai.readthedocs.io/en/latest/colossalai/colossalai.nn.optimizer.cpu_adam.html) 和 [HybridAdam](https://colossalai.readthedocs.io/en/latest/colossalai/colossalai.nn.optimizer.hybrid_adam.html)) 实现了优化器状态的 NVMe offload。
|
||
|
||
<!--- doc-test-ignore-start -->
|
||
|
||
```python
|
||
from colossalai.nn.optimizer import CPUAdam, HybridAdam
|
||
|
||
optimizer = HybridAdam(model.parameters(), lr=1e-3, nvme_offload_fraction=1.0, nvme_offload_dir='./')
|
||
```
|
||
|
||
<!--- doc-test-ignore-end -->
|
||
|
||
`nvme_offload_fraction` 是要 offload 到 NVMe 的优化器状态的比例。 `nvme_offload_dir` 是保存 NVMe offload 文件的目录。如果 `nvme_offload_dir` 为 `None`,将使用随机临时目录。
|
||
|
||
它与 ColossalAI 中的所有并行方法兼容。
|
||
|
||
|
||
> ⚠ 它只会卸载在 CPU 上的优化器状态。这意味着它只会影响 CPU 训练或者使用卸载的 Zero/Gemini。
|
||
|
||
## Exampls
|
||
|
||
Let's start from two simple examples -- training GPT with different methods. These examples relies on `transformers`.
|
||
首先让我们从两个简单的例子开始 -- 用不同的方法训练 GPT。这些例子依赖`transformers`。
|
||
|
||
我们首先应该安装依赖:
|
||
|
||
```shell
|
||
pip install psutil transformers
|
||
```
|
||
|
||
首先,我们导入必要的包和模块:
|
||
|
||
```python
|
||
import os
|
||
import time
|
||
from typing import Dict, Optional
|
||
import psutil
|
||
import torch
|
||
import torch.nn as nn
|
||
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
||
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
||
import colossalai
|
||
from colossalai.nn.optimizer import HybridAdam
|
||
from colossalai.nn.parallel import zero_model_wrapper, zero_optim_wrapper
|
||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||
```
|
||
|
||
然后我们定义一个损失函数:
|
||
|
||
```python
|
||
class GPTLMLoss(nn.Module):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.loss_fn = nn.CrossEntropyLoss()
|
||
def forward(self, logits, labels):
|
||
shift_logits = logits[..., :-1, :].contiguous()
|
||
shift_labels = labels[..., 1:].contiguous()
|
||
# Flatten the tokens
|
||
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)),
|
||
shift_labels.view(-1))
|
||
```
|
||
|
||
我们定义一些工具函数,用来生成随机数据、计算模型参数量和获取当前进程内存占用:
|
||
|
||
```python
|
||
def get_data(batch_size: int, seq_len: int,
|
||
vocab_size: int, device: Optional[str] = None) -> Dict[str, torch.Tensor]:
|
||
device = torch.cuda.current_device() if device is None else device
|
||
input_ids = torch.randint(vocab_size, (batch_size, seq_len),
|
||
device=device)
|
||
attn_mask = torch.ones_like(input_ids)
|
||
return dict(input_ids=input_ids, attention_mask=attn_mask)
|
||
def get_model_numel(model: nn.Module) -> int:
|
||
return sum(p.numel() for p in model.parameters())
|
||
def get_mem_usage() -> int:
|
||
proc = psutil.Process(os.getpid())
|
||
return proc.memory_info().rss
|
||
```
|
||
|
||
我们首先尝试在 CPU 上训练 GPT 模型:
|
||
|
||
```python
|
||
def train_cpu(nvme_offload_fraction: float = 0.0):
|
||
config = GPT2Config()
|
||
model = GPT2LMHeadModel(config)
|
||
criterion = GPTLMLoss()
|
||
optimizer = HybridAdam(model.parameters(), nvme_offload_fraction=nvme_offload_fraction)
|
||
print(f'Model numel: {get_model_numel(model) / 1024**3:.3f} B')
|
||
start = time.time()
|
||
for step in range(3):
|
||
data = get_data(4, 128, config.vocab_size, device='cpu')
|
||
outputs = model(**data)
|
||
loss = criterion(outputs.logits, data['input_ids'])
|
||
loss.backward()
|
||
optimizer.step()
|
||
optimizer.zero_grad()
|
||
print(f'[{step}] loss: {loss.item():.3f}')
|
||
print(f'Time: {time.time() - start:.3f} s')
|
||
print(f'Mem usage: {get_mem_usage() / 1024**2:.3f} MB')
|
||
```
|
||
|
||
不使用 NVME 卸载:
|
||
|
||
```python
|
||
train_cpu(0.0)
|
||
```
|
||
|
||
我们可能得到如下输出:
|
||
|
||
```
|
||
Model numel: 0.116 B
|
||
[0] loss: 10.953
|
||
[1] loss: 10.974
|
||
[2] loss: 10.965
|
||
Time: 7.739 s
|
||
Mem usage: 5966.445 MB
|
||
```
|
||
|
||
然后使用(全量) NVME 卸载:
|
||
|
||
```python
|
||
train_cpu(1.0)
|
||
```
|
||
|
||
我们可能得到:
|
||
|
||
```
|
||
Model numel: 0.116 B
|
||
[0] loss: 10.951
|
||
[1] loss: 10.994
|
||
[2] loss: 10.984
|
||
Time: 8.527 s
|
||
Mem usage: 4968.016 MB
|
||
```
|
||
|
||
对于有1.16亿参数的 GPT2-S 来说,它的优化器状态大约需要占用 0.928 GB 内存。NVME 卸载节省了大约 998 MB 内存,符合我们的预期。
|
||
|
||
然后我们可以用 Gemini 来训练 GPT 模型。放置策略应该设置为`"auto"`、 `"cpu"` 或 `"const"`。
|
||
|
||
```python
|
||
def train_gemini_cpu(nvme_offload_fraction: float = 0.0):
|
||
colossalai.launch_from_torch({})
|
||
config = GPT2Config()
|
||
with ColoInitContext(device=torch.cuda.current_device()):
|
||
model = GPT2LMHeadModel(config)
|
||
criterion = GPTLMLoss()
|
||
optimizer = HybridAdam(model.parameters(), nvme_offload_fraction=nvme_offload_fraction)
|
||
print(f'Model numel: {get_model_numel(model) / 1024**3:.3f} B')
|
||
gemini_config = dict(strict_ddp_mode=True, device=torch.cuda.current_device(),
|
||
placement_policy='cpu', pin_memory=True, hidden_dim=config.n_embd)
|
||
model = zero_model_wrapper(model, zero_stage=3, gemini_config=gemini_config)
|
||
optimizer = zero_optim_wrapper(model, optimizer, initial_scale=2**5)
|
||
start = time.time()
|
||
for step in range(3):
|
||
data = get_data(4, 128, config.vocab_size)
|
||
outputs = model(**data)
|
||
loss = criterion(outputs.logits, data['input_ids'])
|
||
optimizer.backward(loss)
|
||
optimizer.step()
|
||
optimizer.zero_grad()
|
||
print(f'[{step}] loss: {loss.item():.3f}')
|
||
print(f'Time: {time.time() - start:.3f} s')
|
||
print(f'Mem usage: {get_mem_usage() / 1024**2:.3f} MB')
|
||
```
|
||
|
||
不使用 NVME 卸载:
|
||
|
||
```python
|
||
train_gemini_cpu(0.0)
|
||
```
|
||
|
||
我们可能得到:
|
||
|
||
```
|
||
Model numel: 0.116 B
|
||
searching chunk configuration is completed in 0.27 s.
|
||
used number: 118.68 MB, wasted number: 0.75 MB
|
||
total wasted percentage is 0.63%
|
||
[0] loss: 10.953
|
||
[1] loss: 10.938
|
||
[2] loss: 10.969
|
||
Time: 2.997 s
|
||
Mem usage: 5592.227 MB
|
||
```
|
||
|
||
然后使用(全量) NVME 卸载:
|
||
|
||
```python
|
||
train_gemini_cpu(1.0)
|
||
```
|
||
|
||
我们可能得到:
|
||
|
||
```
|
||
Model numel: 0.116 B
|
||
searching chunk configuration is completed in 0.27 s.
|
||
used number: 118.68 MB, wasted number: 0.75 MB
|
||
total wasted percentage is 0.63%
|
||
[0] loss: 10.953
|
||
[1] loss: 10.938
|
||
[2] loss: 10.969
|
||
Time: 3.691 s
|
||
Mem usage: 5298.344 MB
|
||
```
|
||
|
||
NVME 卸载节省了大约 294 MB 内存。注意使用 Gemini 的 `pin_memory` 功能可以加速训练,但是会增加内存占用。所以这个结果也是符合我们预期的。如果我们关闭 `pin_memory`,我们仍然可以观察到大约 900 MB 的内存占用下降。
|
||
|
||
## API 参考
|
||
|
||
{{ autodoc:colossalai.nn.optimizer.HybridAdam }}
|
||
|
||
{{ autodoc:colossalai.nn.optimizer.CPUAdam }}
|