ColossalAI/examples/language/gpt/experiments/pipeline_parallel
digger-yu b9a8dff7e5
[doc] Fix typo under colossalai and doc(#3618)
* Fixed several spelling errors under colossalai

* Fix the spelling error in colossalai and docs directory

* Cautious Changed the spelling error under the example folder

* Update runtime_preparation_pass.py

revert autograft to autograd

* Update search_chunk.py

utile to until

* Update check_installation.py

change misteach to mismatch in line 91

* Update 1D_tensor_parallel.md

revert to perceptron

* Update 2D_tensor_parallel.md

revert to perceptron in line 73

* Update 2p5D_tensor_parallel.md

revert to perceptron in line 71

* Update 3D_tensor_parallel.md

revert to perceptron in line 80

* Update README.md

revert to resnet in line 42

* Update reorder_graph.py

revert to indice in line 7

* Update p2p.py

revert to megatron in line 94

* Update initialize.py

revert to torchrun in line 198

* Update routers.py

change to detailed in line 63

* Update routers.py

change to detailed in line 146

* Update README.md

revert  random number in line 402
2023-04-26 11:38:43 +08:00
..
README.md [doc] Fix typo under colossalai and doc(#3618) 2023-04-26 11:38:43 +08:00
model_zoo.py Move GPT PP Example 2023-01-06 14:48:58 +08:00
requirements.txt [example] fix requirements (#2488) 2023-01-17 13:07:25 +08:00
run.sh Move GPT PP Example 2023-01-06 14:48:58 +08:00
train_gpt_pp.py [pipeline] Add Simplified Alpa DP Partition (#2507) 2023-03-07 10:34:31 +08:00

README.md

Pipeline Parallelism Demo with GPT2

Requirements

Before you can launch training, you need to install the following requirements.

Install PyTorch

#conda
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
#pip
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113

Install Colossal-AI v0.2.0 From Official Website

pip install colossalai==0.2.0+torch1.12cu11.3 -f https://release.colossalai.org

Install transformers

pip install transformers

Dataset

For simplicity, the input data is randomly generated here.

Training

#Run the Pipeline Parallel on GPT with default setting and a dummy dataset.
#You can change the GPU number or microbatch number in the run.sh .
bash run.sh