mirror of https://github.com/hpcaitech/ColossalAI
Ziyue Jiang
2 years ago
5 changed files with 290 additions and 0 deletions
@ -0,0 +1,37 @@
|
||||
# Auto-Parallelism with GPT2 |
||||
|
||||
## Requirements |
||||
|
||||
Before you can launch training, you need to install the following requirements. |
||||
|
||||
### Install PyTorch |
||||
|
||||
```bash |
||||
#conda |
||||
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch |
||||
#pip |
||||
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113 |
||||
``` |
||||
|
||||
### Install [Colossal-AI v0.2.0](https://colossalai.org/download/) From Official Website |
||||
|
||||
```bash |
||||
pip install colossalai==0.2.0+torch1.12cu11.3 -f https://release.colossalai.org |
||||
``` |
||||
|
||||
### Install transformers |
||||
|
||||
```bash |
||||
pip install transformers |
||||
``` |
||||
|
||||
## Dataset |
||||
|
||||
For simplicity, the input data is randonly generated here. |
||||
|
||||
## Training |
||||
|
||||
```bash |
||||
#Run the Pipeline Parallel on GPT with default setting and a dummy dataset. |
||||
bash run.sh |
||||
``` |
@ -0,0 +1,73 @@
|
||||
from torch import nn |
||||
from transformers import GPT2Config, GPT2LMHeadModel |
||||
|
||||
|
||||
## Define the Model and Loss Based on Huggingface transformers GPT2LMHeadModel |
||||
class GPTLMModel(nn.Module): |
||||
|
||||
def __init__(self, |
||||
hidden_size=768, |
||||
num_layers=12, |
||||
num_attention_heads=12, |
||||
max_seq_len=1024, |
||||
vocab_size=50257, |
||||
checkpoint=False): |
||||
super().__init__() |
||||
self.checkpoint = checkpoint |
||||
self.config = GPT2Config(n_embd=hidden_size, |
||||
n_layer=num_layers, |
||||
n_head=num_attention_heads, |
||||
n_positions=max_seq_len, |
||||
n_ctx=max_seq_len, |
||||
vocab_size=vocab_size) |
||||
self.model = GPT2LMHeadModel(self.config) |
||||
if checkpoint: |
||||
self.model.gradient_checkpointing_enable() |
||||
|
||||
def forward(self, input_ids, attention_mask): |
||||
# Only return lm_logits |
||||
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0] |
||||
|
||||
|
||||
def gpt2_medium(checkpoint=False): |
||||
return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint) |
||||
|
||||
|
||||
def gpt2_xl(checkpoint=True): |
||||
return GPTLMModel(hidden_size=1600, num_layers=48, num_attention_heads=32, checkpoint=checkpoint) |
||||
|
||||
|
||||
def gpt2_10b(checkpoint=True): |
||||
return GPTLMModel(hidden_size=4096, num_layers=50, num_attention_heads=16, checkpoint=checkpoint) |
||||
|
||||
|
||||
def gpt2_14b(checkpoint=True): |
||||
return GPTLMModel(hidden_size=4096, num_layers=70, num_attention_heads=16, checkpoint=checkpoint) |
||||
|
||||
|
||||
def gpt2_20b(checkpoint=True): |
||||
return GPTLMModel(hidden_size=8192, num_layers=25, num_attention_heads=16, checkpoint=checkpoint) |
||||
|
||||
|
||||
def gpt2_24b(checkpoint=True): |
||||
return GPTLMModel(hidden_size=8192, num_layers=30, num_attention_heads=16, checkpoint=checkpoint) |
||||
|
||||
|
||||
def model_builder(model_size: str) -> callable: |
||||
if model_size == "gpt2_medium": |
||||
return gpt2_medium |
||||
elif model_size == "gpt2_xl": |
||||
return gpt2_xl |
||||
elif model_size == "gpt2_10b": |
||||
return gpt2_10b |
||||
elif model_size == "gpt2_14b": |
||||
return gpt2_14b |
||||
elif model_size == "gpt2_20b": |
||||
return gpt2_20b |
||||
elif model_size == "gpt2_24b": |
||||
return gpt2_24b |
||||
else: |
||||
raise TypeError(f"model_builder {model_size}") |
||||
|
||||
|
||||
__all__ = ['model_builder'] |
@ -0,0 +1,7 @@
|
||||
export GPUNUM=${GPUNUM:-4} |
||||
export BATCH_SIZE=${BATCH_SIZE:-16} |
||||
export MODEL_TYPE=${MODEL_TYPE:-"gpt2_medium"} |
||||
export NUM_MICROBATCH=${NUM_MICROBATCH:-8} |
||||
|
||||
mkdir -p pp_logs |
||||
python train_gpt_pp.py --device="cuda" --model_type=${MODEL_TYPE} --num_microbatches=${NUM_MICROBATCH} --world_size=${GPUNUM} --batch_size=${BATCH_SIZE} 2>&1 | tee ./pp_logs/${MODEL_TYPE}_gpu_${GPUNUM}_bs_${BATCH_SIZE}_nm_${NUM_MICROBATCH}.log |
@ -0,0 +1,161 @@
|
||||
import argparse |
||||
import time |
||||
from functools import partial |
||||
|
||||
import torch |
||||
from model_zoo import model_builder |
||||
from torch import nn |
||||
from tqdm import tqdm |
||||
|
||||
from colossalai.fx import ColoTracer |
||||
from colossalai.fx.passes.adding_split_node_pass import avgnode_split_pass, split_with_split_nodes_pass |
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger |
||||
from colossalai.nn.optimizer import HybridAdam |
||||
from colossalai.pipeline.middleware.adaptor import get_fx_topology |
||||
from colossalai.pipeline.rpc._pipeline_schedule import OneFOneBPipelineEngine |
||||
from colossalai.pipeline.rpc.utils import rpc_run |
||||
|
||||
|
||||
def parse_args(): |
||||
parser = argparse.ArgumentParser() |
||||
parser.add_argument('--model_type', type=str, default="gpt2_medium") |
||||
parser.add_argument('--world_size', type=int, default=2) |
||||
parser.add_argument('--batch_size', type=int, default=16) |
||||
parser.add_argument('--dp_degree', type=int, default=1) |
||||
parser.add_argument('--tp_degree', type=int, default=1) |
||||
parser.add_argument('--num_microbatches', type=int, default=2) |
||||
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda') |
||||
parser.add_argument('--master_addr', type=str, default='localhost') |
||||
parser.add_argument('--master_port', type=str, default='29011') |
||||
parser.add_argument('--num_worker_threads', type=int, default=128) |
||||
return parser.parse_args() |
||||
|
||||
|
||||
class GPTLMLoss(nn.Module): |
||||
|
||||
def __init__(self): |
||||
super().__init__() |
||||
self.loss_fn = nn.CrossEntropyLoss() |
||||
|
||||
def forward(self, logits, labels): |
||||
shift_logits = logits[..., :-1, :].contiguous() |
||||
shift_labels = labels[..., 1:].contiguous() |
||||
# Flatten the tokens |
||||
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
||||
|
||||
|
||||
# Randomly Generated Data |
||||
def get_data(batch_size, seq_len, vocab_size): |
||||
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device()) |
||||
attention_mask = torch.ones_like(input_ids) |
||||
return input_ids, attention_mask |
||||
|
||||
|
||||
def get_tflops(model_numel, batch_size, seq_len, step_time): |
||||
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12) |
||||
|
||||
|
||||
def create_partition_module(pp_rank: int, stage_num: int, model, data_kwargs): |
||||
tracer = ColoTracer() |
||||
meta_args = {k: v.to('meta') for k, v in data_kwargs.items()} |
||||
graph = tracer.trace(root=model, meta_args=meta_args) |
||||
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__) |
||||
annotated_model = avgnode_split_pass(gm, stage_num) |
||||
|
||||
top_module, split_submodules = split_with_split_nodes_pass(annotated_model, merge_output=True) |
||||
topo = get_fx_topology(top_module) |
||||
for submodule in split_submodules: |
||||
if isinstance(submodule, torch.fx.GraphModule): |
||||
setattr(submodule, '_topo', topo) |
||||
return split_submodules[pp_rank + 1] |
||||
|
||||
|
||||
def partition(model, data_kwargs, pp_rank: int, chunk: int, stage_num: int): |
||||
module = create_partition_module(pp_rank, stage_num, model, data_kwargs) |
||||
return module |
||||
|
||||
|
||||
def run_master(args): |
||||
batch_size = args.batch_size |
||||
device = args.device |
||||
world_size = args.world_size |
||||
stage_num = world_size |
||||
num_microbatches = args.num_microbatches |
||||
model_type = args.model_type |
||||
# batch size per DP degree |
||||
SEQ_LEN = 1024 |
||||
VOCAB_SIZE = 50257 |
||||
NUM_STEPS = 10 |
||||
WARMUP_STEPS = 1 |
||||
|
||||
disable_existing_loggers() |
||||
logger = get_dist_logger() |
||||
logger.info(f"{args.model_type}, batch size {batch_size}, num stage {stage_num}, num microbatch {num_microbatches}", |
||||
ranks=[0]) |
||||
|
||||
torch.manual_seed(123) |
||||
|
||||
# build criterion |
||||
criterion = GPTLMLoss() |
||||
|
||||
# warm up pipeline fx partition |
||||
input_ids, attn_mask = get_data(batch_size, SEQ_LEN, VOCAB_SIZE) |
||||
warmup_data_kwargs = {'input_ids': input_ids, 'attention_mask': attn_mask} |
||||
|
||||
# create model |
||||
model = model_builder(model_type)(checkpoint=False) |
||||
|
||||
# set 1f1b pipeline engine |
||||
pp_engine = OneFOneBPipelineEngine(partition_fn=partial(partition, model, warmup_data_kwargs), |
||||
stage_num=stage_num, |
||||
num_microbatches=num_microbatches, |
||||
device=device, |
||||
chunk=1, |
||||
criterion=criterion, |
||||
metric=None, |
||||
checkpoint=False) |
||||
|
||||
partition_numels = pp_engine.remote_numels() |
||||
for rank, numel in partition_numels.items(): |
||||
logger.info(f'{rank=} numel in the partition:{numel}') |
||||
|
||||
# build optim |
||||
pp_engine.initialize_optimizer(HybridAdam, lr=1e-3) |
||||
|
||||
ranks_tflops = {} |
||||
for n in range(NUM_STEPS): |
||||
# we just use randomly generated data here |
||||
input_ids, attn_mask = get_data(batch_size, SEQ_LEN, VOCAB_SIZE) |
||||
batch = {'input_ids': input_ids, 'attention_mask': attn_mask} |
||||
|
||||
start = time.time() |
||||
outputs = pp_engine.forward_backward(batch=batch, labels=input_ids, forward_only=False) |
||||
step_time = time.time() - start |
||||
|
||||
for rank, numel in partition_numels.items(): |
||||
if rank not in ranks_tflops: |
||||
ranks_tflops[rank] = [] |
||||
step_tflops = get_tflops(numel, batch_size, SEQ_LEN, step_time) |
||||
|
||||
logger.info( |
||||
f"Rank{rank} , [{n + 1}/{NUM_STEPS}] , Step time: {step_time:.3f}s, TFLOPS: {get_tflops(numel, batch_size, SEQ_LEN, step_time):.3f}", |
||||
ranks=[0], |
||||
) |
||||
|
||||
if n >= WARMUP_STEPS: |
||||
ranks_tflops[rank].append(step_tflops) |
||||
|
||||
median_index = ((NUM_STEPS - WARMUP_STEPS) >> 1) + WARMUP_STEPS |
||||
gpu_tflops = [] |
||||
for rank, tflops_list in ranks_tflops.items(): |
||||
tflops_list.sort() |
||||
gpu_tflops.append(tflops_list[median_index]) |
||||
logger.info(f"GPU{rank} Median TFLOPS is {tflops_list[median_index]:.3f}") |
||||
|
||||
logger.info(f"Total TFLOPS is {sum(gpu_tflops):.3f}") |
||||
logger.info(f"Avg TFLOPS per GPU is {sum(gpu_tflops) / world_size:.3f}") |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
args = parse_args() |
||||
rpc_run(args, run_master) |
@ -0,0 +1,12 @@
|
||||
import torch |
||||
|
||||
|
||||
# Randomly Generated Data |
||||
def get_data(batch_size, seq_len, vocab_size): |
||||
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device()) |
||||
attention_mask = torch.ones_like(input_ids) |
||||
return input_ids, attention_mask |
||||
|
||||
|
||||
def get_tflops(model_numel, batch_size, seq_len, step_time): |
||||
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12) |
Loading…
Reference in new issue