ColossalAI/tests/test_tensor/test_net_tp.py

62 lines
1.8 KiB
Python

from cProfile import label
from statistics import mode
from tests.components_to_test.registry import non_distributed_component_funcs
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.core import global_context as gpc
from colossalai.utils import ColoInitContext
import torch.distributed as dist
from functools import partial
def run_simple_net():
# A simple net with two stacked nn.Linear
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
with ColoInitContext():
model = model_builder(checkpoint=True)
# we set the Specs for weight of each linear.
model.proj1.weight.set_spec('1Drow')
model.proj2.weight.set_spec('1Drow')
for i, (data, label) in enumerate(train_dataloader):
output = model(data)
print(output)
if criterion:
loss = criterion(output, label)
else:
loss = output
loss.backward()
if i > 5:
break
# TODO(jzy) check the results with col.nn.Linear?
def run_dist(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_simple_net()
@pytest.mark.dist
@parameterize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_simple_net(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_simple_net()