from cProfile import label from statistics import mode from tests.components_to_test.registry import non_distributed_component_funcs import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils.cuda import get_current_device from colossalai.utils import free_port from colossalai.core import global_context as gpc from colossalai.utils import ColoInitContext import torch.distributed as dist from functools import partial def run_simple_net(): # A simple net with two stacked nn.Linear get_components_func = non_distributed_component_funcs.get_callable('simple_net') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(): model = model_builder(checkpoint=True) # we set the Specs for weight of each linear. model.proj1.weight.set_spec('1Drow') model.proj2.weight.set_spec('1Drow') for i, (data, label) in enumerate(train_dataloader): output = model(data) print(output) if criterion: loss = criterion(output, label) else: loss = output loss.backward() if i > 5: break # TODO(jzy) check the results with col.nn.Linear? def run_dist(rank, world_size, port): config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_simple_net() @pytest.mark.dist @parameterize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_simple_net(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_simple_net()