mirror of https://github.com/hpcaitech/ColossalAI
49 lines
1.4 KiB
Python
49 lines
1.4 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import colossalai
|
|
import colossalai.nn as col_nn
|
|
from torch.fx import symbolic_trace
|
|
from colossalai.fx.passes.adding_split_node_pass import split_with_split_nodes_pass, balanced_split_pass, \
|
|
uniform_split_pass
|
|
|
|
MODEL_DIM = 16
|
|
BATCH_SIZE = 8
|
|
PIPELINE_SIZE = 2
|
|
|
|
|
|
class MLP(torch.nn.Module):
|
|
|
|
def __init__(self, dim: int):
|
|
super().__init__()
|
|
self.linear1 = torch.nn.Linear(dim, dim)
|
|
self.linear2 = torch.nn.Linear(dim, dim)
|
|
self.linear3 = torch.nn.Linear(dim, dim)
|
|
self.linear4 = torch.nn.Linear(dim, dim)
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
x = self.linear2(x)
|
|
x = self.linear3(x)
|
|
x = self.linear4(x)
|
|
return x
|
|
|
|
|
|
def pipeline_pass_test_helper(model, data, pass_func):
|
|
origin_output = model(data)
|
|
symbolic_traced = symbolic_trace(model)
|
|
annotated_model = pass_func(symbolic_traced, PIPELINE_SIZE)
|
|
split_model, split_submodules = split_with_split_nodes_pass(annotated_model)
|
|
output = split_model(data)
|
|
assert output.equal(origin_output)
|
|
|
|
|
|
def test_pipeline_passes():
|
|
model = MLP(MODEL_DIM)
|
|
data = torch.rand(BATCH_SIZE, MODEL_DIM)
|
|
pipeline_pass_test_helper(model, data, balanced_split_pass)
|
|
pipeline_pass_test_helper(model, data, uniform_split_pass)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_pipeline_passes()
|