import torch import torch.nn as nn import colossalai import colossalai.nn as col_nn from torch.fx import symbolic_trace from colossalai.fx.passes.adding_split_node_pass import split_with_split_nodes_pass, balanced_split_pass, \ uniform_split_pass MODEL_DIM = 16 BATCH_SIZE = 8 PIPELINE_SIZE = 2 class MLP(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.linear1 = torch.nn.Linear(dim, dim) self.linear2 = torch.nn.Linear(dim, dim) self.linear3 = torch.nn.Linear(dim, dim) self.linear4 = torch.nn.Linear(dim, dim) def forward(self, x): x = self.linear1(x) x = self.linear2(x) x = self.linear3(x) x = self.linear4(x) return x def pipeline_pass_test_helper(model, data, pass_func): origin_output = model(data) symbolic_traced = symbolic_trace(model) annotated_model = pass_func(symbolic_traced, PIPELINE_SIZE) split_model, split_submodules = split_with_split_nodes_pass(annotated_model) output = split_model(data) assert output.equal(origin_output) def test_pipeline_passes(): model = MLP(MODEL_DIM) data = torch.rand(BATCH_SIZE, MODEL_DIM) pipeline_pass_test_helper(model, data, balanced_split_pass) pipeline_pass_test_helper(model, data, uniform_split_pass) if __name__ == '__main__': test_pipeline_passes()