ColossalAI/tests/test_shardformer/test_model/test_shard_llama.py

107 lines
3.4 KiB
Python

import copy
import os
import random
import pytest
import torch
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM, LlamaModel, LlamaTokenizerFast
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer.shard import ShardConfig, shard_model
from colossalai.testing import rerun_if_address_is_in_use, spawn
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
CONFIG = dict(parallel=dict(data=1, pipeline=1, tensor=dict(size=4, mode='1d')),)
tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
def build_model(rank, world_size):
cfg = LlamaConfig(num_hidden_layers=16)
org_model = LlamaForCausalLM(cfg)
shardconfig = ShardConfig(
rank=rank,
world_size=world_size,
gather_output=True,
)
org_model = org_model.to('cuda')
org_model_forshard = copy.deepcopy(org_model)
sharded_model = shard_model(org_model_forshard, shardconfig).to('cuda')
return org_model, sharded_model
def check_forward(org_model, sharded_model):
input = 'Hello, my dog is cute'
inputs = tokenizer(input, return_tensors='pt').to('cuda')
del inputs["token_type_ids"]
del inputs["attention_mask"]
#orgin model
org_model.eval()
org_out = org_model(**inputs)
#shard model
sharded_model.eval()
shard_out = sharded_model(**inputs)
assert torch.allclose(
org_out[0], shard_out[0],
atol=1e-4), f"shard model output is not equal to orgin model output\n{org_out[0]}\n{shard_out[0]}"
def check_backward(org_model, sharded_model):
# prepare input
input = 'Hello, my dog is cute'
tokenized_input = tokenizer(input, return_tensors='pt').to('cuda')
del tokenized_input["token_type_ids"]
del tokenized_input["attention_mask"]
labels = tokenized_input['input_ids'].clone()
labels[labels == tokenizer.pad_token_id] = -100
tokenized_input['labels'] = labels
#orgin model
org_model.train()
org_out = org_model(**tokenized_input)
org_loss = org_out.loss
org_loss.backward()
org_grad = org_model.model.layers[0].self_attn.q_proj.weight.grad
torch.cuda.empty_cache()
#shard model
sharded_model.train()
shard_out = sharded_model(**tokenized_input)
shard_loss = shard_out.loss
shard_loss.backward()
shard_grad = sharded_model.model.layers[0].self_attn.q_proj.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
def check_llama(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
org_model, sharded_model = build_model(rank, world_size)
check_forward(org_model, sharded_model)
check_backward(org_model, sharded_model)
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_llama():
spawn(check_llama, 4)
if __name__ == "__main__":
test_llama()