mirror of https://github.com/hpcaitech/ColossalAI
107 lines
3.4 KiB
Python
107 lines
3.4 KiB
Python
|
import copy
|
||
|
import os
|
||
|
import random
|
||
|
|
||
|
import pytest
|
||
|
import torch
|
||
|
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM, LlamaModel, LlamaTokenizerFast
|
||
|
|
||
|
import colossalai
|
||
|
from colossalai.logging import disable_existing_loggers
|
||
|
from colossalai.shardformer.shard import ShardConfig, shard_model
|
||
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||
|
|
||
|
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
|
||
|
CONFIG = dict(parallel=dict(data=1, pipeline=1, tensor=dict(size=4, mode='1d')),)
|
||
|
tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
|
||
|
|
||
|
|
||
|
def build_model(rank, world_size):
|
||
|
cfg = LlamaConfig(num_hidden_layers=16)
|
||
|
org_model = LlamaForCausalLM(cfg)
|
||
|
|
||
|
shardconfig = ShardConfig(
|
||
|
rank=rank,
|
||
|
world_size=world_size,
|
||
|
gather_output=True,
|
||
|
)
|
||
|
org_model = org_model.to('cuda')
|
||
|
|
||
|
org_model_forshard = copy.deepcopy(org_model)
|
||
|
sharded_model = shard_model(org_model_forshard, shardconfig).to('cuda')
|
||
|
|
||
|
return org_model, sharded_model
|
||
|
|
||
|
|
||
|
def check_forward(org_model, sharded_model):
|
||
|
input = 'Hello, my dog is cute'
|
||
|
inputs = tokenizer(input, return_tensors='pt').to('cuda')
|
||
|
del inputs["token_type_ids"]
|
||
|
del inputs["attention_mask"]
|
||
|
#orgin model
|
||
|
org_model.eval()
|
||
|
org_out = org_model(**inputs)
|
||
|
|
||
|
#shard model
|
||
|
sharded_model.eval()
|
||
|
shard_out = sharded_model(**inputs)
|
||
|
|
||
|
assert torch.allclose(
|
||
|
org_out[0], shard_out[0],
|
||
|
atol=1e-4), f"shard model output is not equal to orgin model output\n{org_out[0]}\n{shard_out[0]}"
|
||
|
|
||
|
|
||
|
def check_backward(org_model, sharded_model):
|
||
|
# prepare input
|
||
|
input = 'Hello, my dog is cute'
|
||
|
tokenized_input = tokenizer(input, return_tensors='pt').to('cuda')
|
||
|
del tokenized_input["token_type_ids"]
|
||
|
del tokenized_input["attention_mask"]
|
||
|
labels = tokenized_input['input_ids'].clone()
|
||
|
labels[labels == tokenizer.pad_token_id] = -100
|
||
|
tokenized_input['labels'] = labels
|
||
|
|
||
|
#orgin model
|
||
|
org_model.train()
|
||
|
org_out = org_model(**tokenized_input)
|
||
|
org_loss = org_out.loss
|
||
|
org_loss.backward()
|
||
|
org_grad = org_model.model.layers[0].self_attn.q_proj.weight.grad
|
||
|
|
||
|
torch.cuda.empty_cache()
|
||
|
#shard model
|
||
|
sharded_model.train()
|
||
|
shard_out = sharded_model(**tokenized_input)
|
||
|
shard_loss = shard_out.loss
|
||
|
shard_loss.backward()
|
||
|
shard_grad = sharded_model.model.layers[0].self_attn.q_proj.weight.grad
|
||
|
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
|
||
|
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
|
||
|
all_shard_grad = torch.cat(shard_grad_list, dim=0)
|
||
|
|
||
|
assert torch.allclose(org_loss, shard_loss,
|
||
|
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
|
||
|
assert torch.allclose(org_grad, all_shard_grad,
|
||
|
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
|
||
|
|
||
|
|
||
|
def check_llama(rank, world_size, port):
|
||
|
disable_existing_loggers()
|
||
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||
|
|
||
|
org_model, sharded_model = build_model(rank, world_size)
|
||
|
check_forward(org_model, sharded_model)
|
||
|
check_backward(org_model, sharded_model)
|
||
|
|
||
|
torch.cuda.empty_cache()
|
||
|
|
||
|
|
||
|
@pytest.mark.dist
|
||
|
@rerun_if_address_is_in_use()
|
||
|
def test_llama():
|
||
|
spawn(check_llama, 4)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
test_llama()
|