mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
226 lines
8.1 KiB
226 lines
8.1 KiB
import argparse |
|
import time |
|
from contextlib import nullcontext |
|
|
|
import torch |
|
import transformers |
|
from transformers import AutoTokenizer, GenerationConfig |
|
|
|
import colossalai |
|
from colossalai.accelerator import get_accelerator |
|
from colossalai.cluster import DistCoordinator |
|
from colossalai.inference.config import InferenceConfig |
|
from colossalai.inference.core.engine import InferenceEngine |
|
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn |
|
|
|
GIGABYTE = 1024**3 |
|
MEGABYTE = 1024**2 |
|
N_WARMUP_STEPS = 2 |
|
|
|
TORCH_DTYPE_MAP = { |
|
"fp16": torch.float16, |
|
"fp32": torch.float32, |
|
"bf16": torch.bfloat16, |
|
} |
|
|
|
|
|
CONFIG_MAP = { |
|
"toy": transformers.LlamaConfig(num_hidden_layers=4), |
|
"llama-7b": transformers.LlamaConfig( |
|
hidden_size=4096, |
|
intermediate_size=11008, |
|
num_attention_heads=32, |
|
num_hidden_layers=32, |
|
num_key_value_heads=32, |
|
max_position_embeddings=2048, |
|
), |
|
"llama-13b": transformers.LlamaConfig( |
|
hidden_size=5120, |
|
intermediate_size=13824, |
|
num_attention_heads=40, |
|
num_hidden_layers=40, |
|
num_key_value_heads=40, |
|
max_position_embeddings=2048, |
|
), |
|
"llama2-7b": transformers.LlamaConfig( |
|
hidden_size=4096, |
|
intermediate_size=11008, |
|
num_attention_heads=32, |
|
num_hidden_layers=32, |
|
num_key_value_heads=32, |
|
max_position_embeddings=4096, |
|
), |
|
"llama2-13b": transformers.LlamaConfig( |
|
hidden_size=5120, |
|
intermediate_size=13824, |
|
num_attention_heads=40, |
|
num_hidden_layers=40, |
|
num_key_value_heads=40, |
|
max_position_embeddings=4096, |
|
), |
|
"llama3-8b": transformers.LlamaConfig( |
|
hidden_size=4096, |
|
intermediate_size=14336, |
|
num_attention_heads=32, |
|
num_hidden_layers=32, |
|
num_key_value_heads=8, |
|
max_position_embeddings=8192, |
|
), |
|
"llama3-70b": transformers.LlamaConfig( |
|
hidden_size=8192, |
|
intermediate_size=28672, |
|
num_attention_heads=64, |
|
num_hidden_layers=80, |
|
num_key_value_heads=8, |
|
max_position_embeddings=8192, |
|
), |
|
} |
|
|
|
|
|
def data_gen(batch_size: int = 4, seq_len: int = 512): |
|
input_ids = torch.randint(10, 30000, (batch_size, seq_len), device=get_accelerator().get_current_device()) |
|
return input_ids.tolist() |
|
|
|
|
|
def print_details_info(model_config, whole_end2end, total_token_num, dtype, coordinator=None): |
|
if coordinator is None: |
|
coordinator = DistCoordinator() |
|
msg = "-------Perf Summary-------\n" |
|
whole_avg_latency = whole_end2end / (total_token_num) |
|
num_layers = getattr(model_config, "num_layers", model_config.num_hidden_layers) |
|
num_parameters = num_layers * model_config.hidden_size * model_config.hidden_size * 12 |
|
if dtype in ["fp16", "bf16"]: |
|
num_bytes = 2 |
|
elif dtype == "fp32": |
|
num_bytes = 4 |
|
else: |
|
raise ValueError(f"Unsupported dtype {dtype}") |
|
|
|
msg += f"Whole batch end2end time: {whole_end2end * 1000:.2f} ms\n" |
|
msg += f"Whole batch per token latency: {whole_avg_latency * 1000:.2f} ms\n" |
|
msg += f"Throughput: {total_token_num / whole_end2end:.2f} tokens/s\n" |
|
msg += f"Flops: {num_parameters * num_bytes / whole_avg_latency / 1e12:.2f} TFLOPS\n" |
|
if torch.cuda.is_available(): |
|
msg += f"-------Memory Summary Device:{get_accelerator().current_device()}-------\n" |
|
msg += f"Max memory allocated: {get_accelerator().max_memory_allocated() / GIGABYTE:.2f} GB\n" |
|
msg += f"Max memory reserved: {get_accelerator().max_memory_reserved() / GIGABYTE:.2f} GB\n" |
|
|
|
coordinator.print_on_master(msg) |
|
|
|
|
|
def benchmark_inference(args): |
|
coordinator = DistCoordinator() |
|
|
|
torch_dtype = TORCH_DTYPE_MAP.get(args.dtype, None) |
|
config = CONFIG_MAP[args.model] |
|
config.torch_dtype = torch_dtype |
|
config.pad_token_id = config.eos_token_id |
|
|
|
if args.model_path is not None: |
|
model = transformers.LlamaForCausalLM.from_pretrained(args.model_path, torch_dtype=torch_dtype) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_path) |
|
else: |
|
# Random weights |
|
model = transformers.LlamaForCausalLM(config) |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") |
|
if args.dtype == "fp16": |
|
model = model.half() |
|
elif args.dtype == "bf16": |
|
model = model.to(torch.bfloat16) |
|
|
|
inference_config = InferenceConfig( |
|
dtype=args.dtype, |
|
max_batch_size=args.batch_size, |
|
max_input_len=args.max_seq_len, |
|
max_output_len=args.max_output_len, |
|
prefill_ratio=1.2, |
|
block_size=32, |
|
tp_size=args.tp_size, |
|
use_cuda_kernel=True, |
|
) |
|
engine = InferenceEngine(model, tokenizer, inference_config, verbose=True) |
|
|
|
data = data_gen(args.batch_size, args.max_seq_len) |
|
generation_config = GenerationConfig( |
|
pad_token_id=tokenizer.pad_token_id, |
|
max_length=args.max_seq_len + args.max_output_len, |
|
# max_new_tokens=args.max_output_len, |
|
) |
|
coordinator.print_on_master(f"Generation Config: \n{generation_config.to_dict()}") |
|
|
|
ctx = ( |
|
torch.profiler.profile( |
|
record_shapes=True, |
|
with_stack=True, |
|
with_modules=True, |
|
activities=[ |
|
torch.profiler.ProfilerActivity.CPU, |
|
torch.profiler.ProfilerActivity.CUDA, |
|
], |
|
schedule=torch.profiler.schedule(wait=0, warmup=N_WARMUP_STEPS, active=1), |
|
on_trace_ready=torch.profiler.tensorboard_trace_handler( |
|
f"./tb_log_{args.batch_size}_{args.max_seq_len}_{args.max_output_len}" |
|
), |
|
) |
|
if args.profile |
|
else nullcontext() |
|
) |
|
with ctx: |
|
for _ in range(N_WARMUP_STEPS): |
|
engine.generate(prompts_token_ids=data, generation_config=generation_config) |
|
if args.profile: |
|
ctx.step() |
|
if args.nsys: |
|
torch.cuda.cudart().cudaProfilerStart() |
|
|
|
torch.cuda.synchronize() |
|
whole_end2end = time.perf_counter() |
|
output, output_tokens_list = engine.generate( |
|
prompts_token_ids=data, generation_config=generation_config, return_token_ids=True |
|
) |
|
torch.cuda.synchronize() |
|
whole_end2end = time.perf_counter() - whole_end2end |
|
|
|
total_token_num = sum([len(output_tokens) for output_tokens in output_tokens_list]) |
|
coordinator.print_on_master(f"total_token_num: {total_token_num}") |
|
if args.nsys: |
|
torch.cuda.cudart().cudaProfilerStop() |
|
if args.profile: |
|
ctx.step() |
|
|
|
print_details_info(model.config, whole_end2end, total_token_num, args.dtype, coordinator=coordinator) |
|
|
|
|
|
def inference(rank, world_size, port, args): |
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
benchmark_inference(args) |
|
|
|
|
|
@rerun_if_address_is_in_use() |
|
@clear_cache_before_run() |
|
def benchmark(args): |
|
spawn(inference, nprocs=args.tp_size, args=args) |
|
|
|
|
|
# python benchmark_llama3.py -m llama3-8b -b 16 -s 256 -o 256 |
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"-m", |
|
"--model", |
|
default="llama3-8b", |
|
help="The version of Llama model", |
|
choices=["toy", "llama-7b", "llama-13b", "llama2-7b", "llama2-13b", "llama3-8b", "llama3-70b"], |
|
) |
|
parser.add_argument("-p", "--model_path", type=str, default=None, help="The pretrained weights path") |
|
parser.add_argument("-b", "--batch_size", type=int, default=8, help="batch size") |
|
parser.add_argument("-s", "--max_seq_len", type=int, default=8, help="input sequence length") |
|
parser.add_argument("-o", "--max_output_len", type=int, default=128, help="Output length") |
|
parser.add_argument("-t", "--tp_size", type=int, default=1, help="Tensor Parallelism size") |
|
parser.add_argument("-d", "--dtype", type=str, default="fp16", help="Data type", choices=["fp16", "fp32", "bf16"]) |
|
parser.add_argument("--profile", default=False, action="store_true", help="enable torch profiler") |
|
parser.add_argument("--nsys", default=False, action="store_true", help="enable nsys profiler") |
|
|
|
args = parser.parse_args() |
|
|
|
benchmark(args)
|
|
|