You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/inference/llama/benchmark_llama3.py

227 lines
8.1 KiB

import argparse
import time
from contextlib import nullcontext
import torch
import transformers
from transformers import AutoTokenizer, GenerationConfig
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.cluster import DistCoordinator
from colossalai.inference.config import InferenceConfig
from colossalai.inference.core.engine import InferenceEngine
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
GIGABYTE = 1024**3
MEGABYTE = 1024**2
N_WARMUP_STEPS = 2
TORCH_DTYPE_MAP = {
"fp16": torch.float16,
"fp32": torch.float32,
"bf16": torch.bfloat16,
}
CONFIG_MAP = {
"toy": transformers.LlamaConfig(num_hidden_layers=4),
"llama-7b": transformers.LlamaConfig(
hidden_size=4096,
intermediate_size=11008,
num_attention_heads=32,
num_hidden_layers=32,
num_key_value_heads=32,
max_position_embeddings=2048,
),
"llama-13b": transformers.LlamaConfig(
hidden_size=5120,
intermediate_size=13824,
num_attention_heads=40,
num_hidden_layers=40,
num_key_value_heads=40,
max_position_embeddings=2048,
),
"llama2-7b": transformers.LlamaConfig(
hidden_size=4096,
intermediate_size=11008,
num_attention_heads=32,
num_hidden_layers=32,
num_key_value_heads=32,
max_position_embeddings=4096,
),
"llama2-13b": transformers.LlamaConfig(
hidden_size=5120,
intermediate_size=13824,
num_attention_heads=40,
num_hidden_layers=40,
num_key_value_heads=40,
max_position_embeddings=4096,
),
"llama3-8b": transformers.LlamaConfig(
hidden_size=4096,
intermediate_size=14336,
num_attention_heads=32,
num_hidden_layers=32,
num_key_value_heads=8,
max_position_embeddings=8192,
),
"llama3-70b": transformers.LlamaConfig(
hidden_size=8192,
intermediate_size=28672,
num_attention_heads=64,
num_hidden_layers=80,
num_key_value_heads=8,
max_position_embeddings=8192,
),
}
def data_gen(batch_size: int = 4, seq_len: int = 512):
input_ids = torch.randint(10, 30000, (batch_size, seq_len), device=get_accelerator().get_current_device())
return input_ids.tolist()
def print_details_info(model_config, whole_end2end, total_token_num, dtype, coordinator=None):
if coordinator is None:
coordinator = DistCoordinator()
msg = "-------Perf Summary-------\n"
whole_avg_latency = whole_end2end / (total_token_num)
num_layers = getattr(model_config, "num_layers", model_config.num_hidden_layers)
num_parameters = num_layers * model_config.hidden_size * model_config.hidden_size * 12
if dtype in ["fp16", "bf16"]:
num_bytes = 2
elif dtype == "fp32":
num_bytes = 4
else:
raise ValueError(f"Unsupported dtype {dtype}")
msg += f"Whole batch end2end time: {whole_end2end * 1000:.2f} ms\n"
msg += f"Whole batch per token latency: {whole_avg_latency * 1000:.2f} ms\n"
msg += f"Throughput: {total_token_num / whole_end2end:.2f} tokens/s\n"
msg += f"Flops: {num_parameters * num_bytes / whole_avg_latency / 1e12:.2f} TFLOPS\n"
if torch.cuda.is_available():
msg += f"-------Memory Summary Device:{get_accelerator().current_device()}-------\n"
msg += f"Max memory allocated: {get_accelerator().max_memory_allocated() / GIGABYTE:.2f} GB\n"
msg += f"Max memory reserved: {get_accelerator().max_memory_reserved() / GIGABYTE:.2f} GB\n"
coordinator.print_on_master(msg)
def benchmark_inference(args):
coordinator = DistCoordinator()
torch_dtype = TORCH_DTYPE_MAP.get(args.dtype, None)
config = CONFIG_MAP[args.model]
config.torch_dtype = torch_dtype
config.pad_token_id = config.eos_token_id
if args.model_path is not None:
model = transformers.LlamaForCausalLM.from_pretrained(args.model_path, torch_dtype=torch_dtype)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
else:
# Random weights
model = transformers.LlamaForCausalLM(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
if args.dtype == "fp16":
model = model.half()
elif args.dtype == "bf16":
model = model.to(torch.bfloat16)
inference_config = InferenceConfig(
dtype=args.dtype,
max_batch_size=args.batch_size,
max_input_len=args.max_seq_len,
max_output_len=args.max_output_len,
prefill_ratio=1.2,
block_size=32,
tp_size=args.tp_size,
use_cuda_kernel=True,
)
engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
data = data_gen(args.batch_size, args.max_seq_len)
generation_config = GenerationConfig(
pad_token_id=tokenizer.pad_token_id,
max_length=args.max_seq_len + args.max_output_len,
# max_new_tokens=args.max_output_len,
)
coordinator.print_on_master(f"Generation Config: \n{generation_config.to_dict()}")
ctx = (
torch.profiler.profile(
record_shapes=True,
with_stack=True,
with_modules=True,
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
schedule=torch.profiler.schedule(wait=0, warmup=N_WARMUP_STEPS, active=1),
on_trace_ready=torch.profiler.tensorboard_trace_handler(
f"./tb_log_{args.batch_size}_{args.max_seq_len}_{args.max_output_len}"
),
)
if args.profile
else nullcontext()
)
with ctx:
for _ in range(N_WARMUP_STEPS):
engine.generate(prompts_token_ids=data, generation_config=generation_config)
if args.profile:
ctx.step()
if args.nsys:
torch.cuda.cudart().cudaProfilerStart()
torch.cuda.synchronize()
whole_end2end = time.perf_counter()
output, output_tokens_list = engine.generate(
prompts_token_ids=data, generation_config=generation_config, return_token_ids=True
)
torch.cuda.synchronize()
whole_end2end = time.perf_counter() - whole_end2end
total_token_num = sum([len(output_tokens) for output_tokens in output_tokens_list])
coordinator.print_on_master(f"total_token_num: {total_token_num}")
if args.nsys:
torch.cuda.cudart().cudaProfilerStop()
if args.profile:
ctx.step()
print_details_info(model.config, whole_end2end, total_token_num, args.dtype, coordinator=coordinator)
def inference(rank, world_size, port, args):
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
benchmark_inference(args)
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def benchmark(args):
spawn(inference, nprocs=args.tp_size, args=args)
# python benchmark_llama3.py -m llama3-8b -b 16 -s 256 -o 256
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model",
default="llama3-8b",
help="The version of Llama model",
choices=["toy", "llama-7b", "llama-13b", "llama2-7b", "llama2-13b", "llama3-8b", "llama3-70b"],
)
parser.add_argument("-p", "--model_path", type=str, default=None, help="The pretrained weights path")
parser.add_argument("-b", "--batch_size", type=int, default=8, help="batch size")
parser.add_argument("-s", "--max_seq_len", type=int, default=8, help="input sequence length")
parser.add_argument("-o", "--max_output_len", type=int, default=128, help="Output length")
parser.add_argument("-t", "--tp_size", type=int, default=1, help="Tensor Parallelism size")
parser.add_argument("-d", "--dtype", type=str, default="fp16", help="Data type", choices=["fp16", "fp32", "bf16"])
parser.add_argument("--profile", default=False, action="store_true", help="enable torch profiler")
parser.add_argument("--nsys", default=False, action="store_true", help="enable nsys profiler")
args = parser.parse_args()
benchmark(args)