Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

47 lines
1.5 KiB

import pytest
import torch
import torchvision.models as tm
from packaging import version
from colossalai.testing import clear_cache_before_run, parameterize
try:
from colossalai._analyzer._subclasses import MetaTensorMode
except:
pass
from tests.test_analyzer.test_fx.zoo import tm_models, tmm_models
def compare_all(tensor: torch.Tensor, meta_tensor: torch.Tensor):
assert (
tensor.shape == meta_tensor.shape
), f"the shape of tensor ({tensor.shape}) and meta tensor ({meta_tensor.shape}) does not match."
assert (
tensor.dtype == meta_tensor.dtype
), f"the dtype of tensor ({tensor.dtype}) and meta tensor ({meta_tensor.dtype}) does not match."
assert (
tensor.stride() == meta_tensor.stride()
), f"the stride of tensor ({tensor.stride()}) and meta tensor ({meta_tensor.stride()}) does not match."
def run_and_compare(model):
x = torch.rand(2, 3, 224, 224, requires_grad=True)
x_out = model(x)
with MetaTensorMode():
meta_x = torch.rand(2, 3, 224, 224, requires_grad=True)
meta_out = model(meta_x)
compare_all(x_out, meta_out)
x_out.sum().backward()
meta_out.sum().backward()
compare_all(x.grad, meta_x.grad)
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("1.12.0"), reason="torch version < 12")
@clear_cache_before_run()
@parameterize("m", tm_models + tmm_models)
def test_meta_mode_shape(m):
run_and_compare(m())
if __name__ == "__main__":
test_meta_mode_shape(tm.resnet18)