|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torchvision.models as tm
|
|
|
|
from packaging import version
|
|
|
|
|
|
|
|
from colossalai.testing import clear_cache_before_run, parameterize
|
|
|
|
|
|
|
|
try:
|
|
|
|
from colossalai._analyzer._subclasses import MetaTensorMode
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
from tests.test_analyzer.test_fx.zoo import tm_models, tmm_models
|
|
|
|
|
|
|
|
|
|
|
|
def compare_all(tensor: torch.Tensor, meta_tensor: torch.Tensor):
|
|
|
|
assert (
|
|
|
|
tensor.shape == meta_tensor.shape
|
|
|
|
), f"the shape of tensor ({tensor.shape}) and meta tensor ({meta_tensor.shape}) does not match."
|
|
|
|
assert (
|
|
|
|
tensor.dtype == meta_tensor.dtype
|
|
|
|
), f"the dtype of tensor ({tensor.dtype}) and meta tensor ({meta_tensor.dtype}) does not match."
|
|
|
|
assert (
|
|
|
|
tensor.stride() == meta_tensor.stride()
|
|
|
|
), f"the stride of tensor ({tensor.stride()}) and meta tensor ({meta_tensor.stride()}) does not match."
|
|
|
|
|
|
|
|
|
|
|
|
def run_and_compare(model):
|
|
|
|
x = torch.rand(2, 3, 224, 224, requires_grad=True)
|
|
|
|
x_out = model(x)
|
|
|
|
with MetaTensorMode():
|
|
|
|
meta_x = torch.rand(2, 3, 224, 224, requires_grad=True)
|
|
|
|
meta_out = model(meta_x)
|
|
|
|
compare_all(x_out, meta_out)
|
|
|
|
x_out.sum().backward()
|
|
|
|
meta_out.sum().backward()
|
|
|
|
compare_all(x.grad, meta_x.grad)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("1.12.0"), reason="torch version < 12")
|
|
|
|
@clear_cache_before_run()
|
|
|
|
@parameterize("m", tm_models + tmm_models)
|
|
|
|
def test_meta_mode_shape(m):
|
|
|
|
run_and_compare(m())
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
test_meta_mode_shape(tm.resnet18)
|