mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
54 lines
2.0 KiB
54 lines
2.0 KiB
/*This code from NVIDIA Megatron: |
|
* with minor changes. */ |
|
|
|
#include <cuda_fp16.h> |
|
#include <torch/extension.h> |
|
|
|
#include <vector> |
|
|
|
torch::Tensor fwd_cuda(torch::Tensor const& input, torch::Tensor const& mask, |
|
float scale_factor); |
|
|
|
torch::Tensor bwd_cuda(torch::Tensor const& output_grads, |
|
torch::Tensor const& softmax_results, |
|
float scale_factor); |
|
|
|
int get_batch_per_block(int query_seq_len, int key_seq_len, int batches, |
|
int attn_heads); |
|
|
|
torch::Tensor fwd(torch::Tensor const& input, torch::Tensor const& mask, |
|
float scale_factor) { |
|
AT_ASSERTM(input.dim() == 4, "expected 4D tensor"); |
|
AT_ASSERTM((input.scalar_type() == at::ScalarType::Half) || |
|
(input.scalar_type() == at::ScalarType::BFloat16), |
|
"Only fp16 and bf16 are supported"); |
|
AT_ASSERTM(mask.dim() == 4, "expected 4D tensor"); |
|
|
|
return fwd_cuda(input, mask, scale_factor); |
|
} |
|
|
|
torch::Tensor bwd(torch::Tensor const& output_grads, |
|
torch::Tensor const& softmax_results, float scale_factor) { |
|
AT_ASSERTM(output_grads.dim() == 4, "expected 3D tensor"); |
|
AT_ASSERTM(softmax_results.dim() == 4, "expected 3D tensor"); |
|
|
|
AT_ASSERTM((output_grads.scalar_type() == at::ScalarType::Half) || |
|
(output_grads.scalar_type() == at::ScalarType::BFloat16), |
|
"Only fp16 and bf16 are supported"); |
|
AT_ASSERTM((softmax_results.scalar_type() == at::ScalarType::Half) || |
|
(softmax_results.scalar_type() == at::ScalarType::BFloat16), |
|
"Only fp16 and bf16 are supported"); |
|
|
|
return bwd_cuda(output_grads, softmax_results, scale_factor); |
|
} |
|
|
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { |
|
m.def("forward", &fwd, |
|
"Self Multihead Attention scaled, time masked softmax -- Forward."); |
|
|
|
m.def("backward", &bwd, |
|
"Self Multihead Attention scaled, time masked softmax -- Backward."); |
|
|
|
m.def("get_batch_per_block", &get_batch_per_block, |
|
"Return Batch per block size."); |
|
}
|
|
|