mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
55 lines
2.0 KiB
55 lines
2.0 KiB
3 years ago
|
/*This code from NVIDIA Megatron:
|
||
|
* with minor changes. */
|
||
|
|
||
|
#include <cuda_fp16.h>
|
||
|
#include <torch/extension.h>
|
||
1 year ago
|
|
||
3 years ago
|
#include <vector>
|
||
|
|
||
1 year ago
|
torch::Tensor fwd_cuda(torch::Tensor const& input, torch::Tensor const& mask,
|
||
|
float scale_factor);
|
||
|
|
||
|
torch::Tensor bwd_cuda(torch::Tensor const& output_grads,
|
||
|
torch::Tensor const& softmax_results,
|
||
|
float scale_factor);
|
||
|
|
||
8 months ago
|
int get_batch_per_block(int query_seq_len, int key_seq_len, int batches,
|
||
|
int attn_heads);
|
||
1 year ago
|
|
||
|
torch::Tensor fwd(torch::Tensor const& input, torch::Tensor const& mask,
|
||
|
float scale_factor) {
|
||
3 years ago
|
AT_ASSERTM(input.dim() == 4, "expected 4D tensor");
|
||
|
AT_ASSERTM((input.scalar_type() == at::ScalarType::Half) ||
|
||
1 year ago
|
(input.scalar_type() == at::ScalarType::BFloat16),
|
||
|
"Only fp16 and bf16 are supported");
|
||
3 years ago
|
AT_ASSERTM(mask.dim() == 4, "expected 4D tensor");
|
||
|
|
||
|
return fwd_cuda(input, mask, scale_factor);
|
||
|
}
|
||
|
|
||
1 year ago
|
torch::Tensor bwd(torch::Tensor const& output_grads,
|
||
|
torch::Tensor const& softmax_results, float scale_factor) {
|
||
3 years ago
|
AT_ASSERTM(output_grads.dim() == 4, "expected 3D tensor");
|
||
|
AT_ASSERTM(softmax_results.dim() == 4, "expected 3D tensor");
|
||
|
|
||
|
AT_ASSERTM((output_grads.scalar_type() == at::ScalarType::Half) ||
|
||
1 year ago
|
(output_grads.scalar_type() == at::ScalarType::BFloat16),
|
||
|
"Only fp16 and bf16 are supported");
|
||
3 years ago
|
AT_ASSERTM((softmax_results.scalar_type() == at::ScalarType::Half) ||
|
||
1 year ago
|
(softmax_results.scalar_type() == at::ScalarType::BFloat16),
|
||
|
"Only fp16 and bf16 are supported");
|
||
3 years ago
|
|
||
|
return bwd_cuda(output_grads, softmax_results, scale_factor);
|
||
|
}
|
||
|
|
||
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||
8 months ago
|
m.def("forward", &fwd,
|
||
1 year ago
|
"Self Multihead Attention scaled, time masked softmax -- Forward.");
|
||
3 years ago
|
|
||
8 months ago
|
m.def("backward", &bwd,
|
||
1 year ago
|
"Self Multihead Attention scaled, time masked softmax -- Backward.");
|
||
3 years ago
|
|
||
8 months ago
|
m.def("get_batch_per_block", &get_batch_per_block,
|
||
1 year ago
|
"Return Batch per block size.");
|
||
3 years ago
|
}
|