mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
3.0 KiB
96 lines
3.0 KiB
import argparse
|
|
from typing import List, Union
|
|
|
|
import config
|
|
import uvicorn
|
|
from colossalqa.local.llm import ColossalAPI, ColossalLLM
|
|
from colossalqa.mylogging import get_logger
|
|
from fastapi import FastAPI, Request
|
|
from pydantic import BaseModel
|
|
from RAG_ChatBot import RAG_ChatBot
|
|
from utils import DocAction
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
def parseArgs():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--http_host", default="0.0.0.0")
|
|
parser.add_argument("--http_port", type=int, default=13666)
|
|
return parser.parse_args()
|
|
|
|
|
|
app = FastAPI()
|
|
|
|
|
|
class DocUpdateReq(BaseModel):
|
|
doc_files: Union[List[str], str, None] = None
|
|
action: DocAction = DocAction.ADD
|
|
|
|
|
|
class GenerationTaskReq(BaseModel):
|
|
user_input: str
|
|
|
|
|
|
@app.post("/update")
|
|
def update_docs(data: DocUpdateReq, request: Request):
|
|
if data.action == "add":
|
|
if isinstance(data.doc_files, str):
|
|
data.doc_files = [data.doc_files]
|
|
chatbot.load_doc_from_files(files=data.doc_files)
|
|
all_docs = ""
|
|
for doc in chatbot.docs_names:
|
|
all_docs += f"\t{doc}\n\n"
|
|
return {"response": f"文件上传完成,所有数据库文件:\n\n{all_docs}让我们开始对话吧!"}
|
|
elif data.action == "clear":
|
|
chatbot.clear_docs(**all_config["chain"])
|
|
return {"response": f"已清空数据库。"}
|
|
|
|
|
|
@app.post("/generate")
|
|
def generate(data: GenerationTaskReq, request: Request):
|
|
try:
|
|
chatbot_response, chatbot.memory = chatbot.run(data.user_input, chatbot.memory)
|
|
return {"response": chatbot_response, "error": ""}
|
|
except Exception as e:
|
|
return {"response": "模型生成回答有误", "error": f"Error in generating answers, details: {e}"}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parseArgs()
|
|
|
|
all_config = config.ALL_CONFIG
|
|
model_name = all_config["model"]["model_name"]
|
|
|
|
# initialize chatbot
|
|
logger.info(f"Initialize the chatbot from {model_name}")
|
|
|
|
if all_config["model"]["mode"] == "local":
|
|
colossal_api = ColossalAPI(model_name, all_config["model"]["model_path"])
|
|
llm = ColossalLLM(n=1, api=colossal_api)
|
|
elif all_config["model"]["mode"] == "api":
|
|
if model_name == "pangu_api":
|
|
from colossalqa.local.pangu_llm import Pangu
|
|
|
|
gen_config = {
|
|
"user": "User",
|
|
"max_tokens": all_config["chain"]["disambig_llm_kwargs"]["max_new_tokens"],
|
|
"temperature": all_config["chain"]["disambig_llm_kwargs"]["temperature"],
|
|
"n": 1, # the number of responses generated
|
|
}
|
|
llm = Pangu(gen_config=gen_config)
|
|
llm.set_auth_config() # verify user's auth info here
|
|
elif model_name == "chatgpt_api":
|
|
from langchain.llms import OpenAI
|
|
|
|
llm = OpenAI()
|
|
else:
|
|
raise ValueError("Unsupported mode.")
|
|
|
|
# initialize chatbot
|
|
chatbot = RAG_ChatBot(llm, all_config)
|
|
|
|
app_config = uvicorn.Config(app, host=args.http_host, port=args.http_port)
|
|
server = uvicorn.Server(config=app_config)
|
|
server.run()
|