mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
256 lines
12 KiB
256 lines
12 KiB
from copy import deepcopy |
|
from typing import Dict, List |
|
|
|
import torch |
|
from torch.fx.node import Node |
|
|
|
from colossalai._analyzer.fx.node_util import MetaInfo |
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( |
|
CommAction, |
|
CommType, |
|
OperationData, |
|
OperationDataType, |
|
TrainCycleItem, |
|
) |
|
from colossalai.device.device_mesh import DeviceMesh |
|
from colossalai.tensor.comm_spec import CommSpec |
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager |
|
from colossalai.tensor.sharding_spec import ShardingSpec |
|
|
|
shape_consistency_manager = ShapeConsistencyManager() |
|
|
|
|
|
def runtime_apply(node: Node, origin_dict: Dict, input_dict: Dict, node_index: int, user_node_index: int): |
|
""" |
|
This method will be invoked during runtime to do the shape consistency, which make sure the activations is converted into |
|
the user node expected form. |
|
""" |
|
origin_sharding_spec = origin_dict[node_index] |
|
target_sharding_spec = input_dict[node_index][user_node_index] |
|
return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec) |
|
|
|
|
|
def runtime_apply_for_iterable_object(node: Node, origin_dict: Dict, input_dict: Dict, node_index: int, |
|
user_node_index: int): |
|
""" |
|
This method will be invoked during runtime to do the shape consistency, which makes sure the activations in type of tuple or list |
|
is converted into the user node expected form. |
|
""" |
|
rst = [] |
|
for index, (origin_sharding_spec, |
|
target_sharding_spec) in enumerate(zip(origin_dict[node_index], |
|
input_dict[node_index][user_node_index])): |
|
rst.append( |
|
shape_consistency_manager.apply_for_autoparallel_runtime(node[index], origin_sharding_spec, |
|
target_sharding_spec)) |
|
rst = type(node)(rst) |
|
return rst |
|
|
|
|
|
def runtime_comm_spec_apply(tensor: torch.Tensor, comm_actions_dict: Dict, node_index: int, op_data_name: str): |
|
""" |
|
This method will be invoked during runtime to apply the comm action following the instruction of comm spec. |
|
""" |
|
comm_action = comm_actions_dict[node_index][op_data_name] |
|
if isinstance(comm_action.comm_spec, CommSpec): |
|
rst = comm_action.comm_spec.covert_spec_to_action(tensor) |
|
else: |
|
origin_sharding_spec = comm_action.comm_spec['src_spec'] |
|
tgt_sharding_spec = comm_action.comm_spec['tgt_spec'] |
|
rst = shape_consistency_manager.apply_for_autoparallel_runtime(tensor, origin_sharding_spec, tgt_sharding_spec) |
|
return rst |
|
|
|
|
|
def _preprocess_graph(nodes: List[Node]): |
|
""" |
|
This method is used to extract all the placeholders with sharding information, |
|
and mapping the nodes into the index of the origin graph. |
|
""" |
|
# mapping the node into the origin graph index |
|
node_to_index_dict = {} |
|
index = 0 |
|
for node in nodes: |
|
if node.target == 'sharding_spec_convert_dict': |
|
input_dict_node = node |
|
continue |
|
if node.target == 'origin_node_sharding_spec_dict': |
|
origin_dict_node = node |
|
continue |
|
if node.target == 'comm_actions_dict': |
|
comm_actions_dict_node = node |
|
continue |
|
if not hasattr(node, 'best_strategy'): |
|
continue |
|
node_to_index_dict[node] = index |
|
index += 1 |
|
|
|
return input_dict_node, origin_dict_node, comm_actions_dict_node, node_to_index_dict |
|
|
|
|
|
def _shape_consistency_apply(gm: torch.fx.GraphModule): |
|
""" |
|
This pass is used to add the shape consistency node to the origin graph. |
|
""" |
|
mod_graph = gm.graph |
|
nodes = tuple(mod_graph.nodes) |
|
|
|
input_dict_node, origin_dict_node, _, node_to_index_dict = _preprocess_graph(nodes) |
|
|
|
for node in nodes: |
|
if not hasattr(node, 'best_strategy') or node.op == 'output': |
|
continue |
|
|
|
for user_node_index, user_node in enumerate(node.strategies_vector.successor_nodes): |
|
if isinstance(node.sharding_spec, (list, tuple)): |
|
assert isinstance( |
|
node.target_sharding_specs, |
|
(list, |
|
tuple)), 'target sharding specs should be tuple or list when node.sharding_spec is tuple or list' |
|
total_difference = 0 |
|
for sharding_spec, target_sharding_spec in zip(node.sharding_spec, |
|
node.target_sharding_specs[user_node_index]): |
|
total_difference += sharding_spec.sharding_sequence_difference(target_sharding_spec) |
|
if total_difference == 0: |
|
continue |
|
with mod_graph.inserting_before(user_node): |
|
shape_consistency_node = mod_graph.create_node('call_function', |
|
runtime_apply_for_iterable_object, |
|
args=(node, origin_dict_node, input_dict_node, |
|
node_to_index_dict[node], user_node_index)) |
|
|
|
else: |
|
assert isinstance(node.sharding_spec, |
|
ShardingSpec), 'node.sharding_spec should be type of ShardingSpec, tuple or list.' |
|
if node.sharding_spec.sharding_sequence_difference(node.target_sharding_specs[user_node_index]) == 0: |
|
continue |
|
with mod_graph.inserting_before(user_node): |
|
shape_consistency_node = mod_graph.create_node('call_function', |
|
runtime_apply, |
|
args=(node, origin_dict_node, input_dict_node, |
|
node_to_index_dict[node], user_node_index)) |
|
if hasattr(user_node.meta['info'], 'activation_checkpoint'): |
|
MetaInfo(shape_consistency_node, |
|
mod_dir=user_node.meta['info'].mod_dir, |
|
activation_checkpoint=tuple(user_node.meta['info'].activation_checkpoint)) |
|
new_args = list(user_node.args) |
|
new_kwargs = dict(user_node.kwargs) |
|
# the origin node may be a positional argument or key word argument of user node |
|
if node in new_args: |
|
# substitute the origin node with shape_consistency_node |
|
origin_index_args = new_args.index(node) |
|
new_args[origin_index_args] = shape_consistency_node |
|
user_node.args = tuple(new_args) |
|
elif str(node) in new_kwargs: |
|
# substitute the origin node with shape_consistency_node |
|
new_kwargs[str(node)] = shape_consistency_node |
|
user_node.kwargs = new_kwargs |
|
|
|
return gm |
|
|
|
|
|
def _comm_spec_apply(gm: torch.fx.GraphModule): |
|
""" |
|
This pass is used to add the comm spec apply node to the origin graph. |
|
""" |
|
mod_graph = gm.graph |
|
nodes = tuple(mod_graph.nodes) |
|
|
|
_, _, comm_actions_dict_node, node_to_index_dict = _preprocess_graph(nodes) |
|
|
|
for node in nodes: |
|
if not hasattr(node, 'best_strategy') or node.op == 'output': |
|
continue |
|
|
|
comm_actions = node.best_strategy.communication_actions |
|
for op_data, comm_action in comm_actions.items(): |
|
|
|
if comm_action.comm_type == CommType.HOOK: |
|
continue |
|
if comm_action.comm_type == CommType.BEFORE: |
|
if op_data.type == OperationDataType.OUTPUT: |
|
comm_object = node |
|
elif comm_action.key_for_kwarg is not None: |
|
comm_object = node.kwargs[comm_action.key_for_kwarg] |
|
else: |
|
comm_object = node.args[comm_action.arg_index] |
|
with mod_graph.inserting_before(node): |
|
comm_spec_apply_node = mod_graph.create_node('call_function', |
|
runtime_comm_spec_apply, |
|
args=(comm_object, comm_actions_dict_node, |
|
node_to_index_dict[node], op_data.name)) |
|
# the origin node may be a positional argument or key word argument of user node |
|
if comm_action.key_for_kwarg is not None: |
|
# substitute the origin node with comm_spec_apply_node |
|
new_kwargs = dict(node.kwargs) |
|
new_kwargs[comm_action.key_for_kwarg] = comm_spec_apply_node |
|
node.kwargs = new_kwargs |
|
else: |
|
# substitute the origin node with comm_spec_apply_node |
|
new_args = list(node.args) |
|
new_args[comm_action.arg_index] = comm_spec_apply_node |
|
node.args = tuple(new_args) |
|
|
|
elif comm_action.comm_type == CommType.AFTER: |
|
with mod_graph.inserting_after(node): |
|
comm_spec_apply_node = mod_graph.create_node('call_function', |
|
runtime_comm_spec_apply, |
|
args=(node, comm_actions_dict_node, |
|
node_to_index_dict[node], op_data.name)) |
|
user_list = list(node.users.keys()) |
|
for user in user_list: |
|
if user == comm_spec_apply_node: |
|
continue |
|
new_args = list(user.args) |
|
new_kwargs = dict(user.kwargs) |
|
# the origin node may be a positional argument or key word argument of user node |
|
if node in new_args: |
|
# substitute the origin node with comm_spec_apply_node |
|
new_args[new_args.index(node)] = comm_spec_apply_node |
|
user.args = tuple(new_args) |
|
elif str(node) in new_kwargs: |
|
# substitute the origin node with comm_spec_apply_node |
|
new_kwargs[str(node)] = comm_spec_apply_node |
|
user.kwargs = new_kwargs |
|
if hasattr(node.meta['info'], 'activation_checkpoint'): |
|
MetaInfo(comm_spec_apply_node, |
|
mod_dir=node.meta['info'].mod_dir, |
|
activation_checkpoint=tuple(node.meta['info'].activation_checkpoint)) |
|
|
|
return gm |
|
|
|
|
|
def _act_annotation_pass(gm: torch.fx.GraphModule): |
|
""" |
|
This pass is used to add the act annotation to the new inserted nodes. |
|
""" |
|
mod_graph = gm.graph |
|
nodes = tuple(mod_graph.nodes) |
|
|
|
for node in nodes: |
|
if not hasattr(node.meta, 'activation_checkpoint'): |
|
from .runtime_preparation_pass import size_processing |
|
|
|
user_act_annotation = -1 |
|
input_act_annotation = -1 |
|
for user_node in node.users.keys(): |
|
if 'activation_checkpoint' in user_node.meta: |
|
user_act_annotation = user_node.meta['activation_checkpoint'] |
|
break |
|
for input_node in node._input_nodes.keys(): |
|
if 'activation_checkpoint' in input_node.meta: |
|
input_act_annotation = input_node.meta['activation_checkpoint'] |
|
break |
|
if user_act_annotation == input_act_annotation and user_act_annotation != -1: |
|
node.meta['activation_checkpoint'] = user_act_annotation |
|
|
|
return gm |
|
|
|
|
|
def runtime_apply_pass(gm: torch.fx.GraphModule): |
|
""" |
|
The method manages all the passes acting on the distributed training runtime. |
|
""" |
|
gm = _shape_consistency_apply(gm) |
|
gm = _comm_spec_apply(gm) |
|
|
|
return gm
|
|
|