Commit Graph

12 Commits (d6e3dca436e5f6c711bc186d6263ed004e6b6091)

Author SHA1 Message Date
Zangwei Zheng 197a2c89e2 [NFC] polish colossalai/communication/collective.py (#1262) 2022-07-13 12:08:21 +08:00
アマデウス 2c42b230f3
updated collective ops api (#1054) 2022-06-02 12:52:27 +08:00
Frank Lee 8004c8e938
[doc] improved docstring in the communication module (#863) 2022-04-25 13:41:43 +08:00
Frank Lee 1cb7bdad3b
[util] fixed communication API depth with PyTorch 1.9 (#721) 2022-04-12 09:44:40 +08:00
アマデウス 6302069c0e
[model checkpoint] updated communication ops for cpu tensors (#590) 2022-04-01 16:52:20 +08:00
Liang Bowen ec5086c49c Refactored docstring to google style 2022-03-29 17:17:47 +08:00
アマデウス 9ee197d0e9 moved env variables to global variables; (#215)
added branch context;
added vocab parallel layers;
moved split_batch from load_batch to tensor parallel embedding layers;
updated gpt model;
updated unit test cases;
fixed few collective communicator bugs
2022-02-15 11:31:13 +08:00
HELSON 0f8c7f9804
Fixed docstring in colossalai (#171) 2022-01-21 10:44:30 +08:00
アマデウス 0fedef4f3c
Layer integration (#83)
* integrated parallel layers for ease of building models

* integrated 2.5d layers

* cleaned codes and unit tests

* added log metric by step hook; updated imagenet benchmark; fixed some bugs

* reworked initialization; cleaned codes

Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-27 15:04:32 +08:00
Frank Lee 35813ed3c4
update examples and sphnix docs for the new api (#63) 2021-12-13 22:07:01 +08:00
Frank Lee da01c234e1
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler

* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)

* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes

* fixed trainer

* Revert "fixed trainer"

This reverts commit 2e0b0b7699.

* improved consistency between trainer, engine and schedule (#23)

Co-authored-by: 1SAA <c2h214748@gmail.com>

* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000

* Integrate 1d tensor parallel in Colossal-AI (#39)

* fixed 1D and 2D convergence (#38)

* optimized 2D operations

* fixed 1D ViT convergence problem

* Feature/ddp (#49)

* remove redundancy func in setup (#19) (#20)

* use env to control the language of doc (#24) (#25)

* Support TP-compatible Torch AMP and Update trainer API (#27)

* Add gradient accumulation, fix lr scheduler

* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)

* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes

* fixed trainer

* Revert "fixed trainer"

This reverts commit 2e0b0b7699.

* improved consistency between trainer, engine and schedule (#23)

Co-authored-by: 1SAA <c2h214748@gmail.com>

Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>

* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)

* add explanation for ViT example (#35) (#36)

* support torch ddp

* fix loss accumulation

* add log for ddp

* change seed

* modify timing hook

Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>

* Feature/pipeline (#40)

* remove redundancy func in setup (#19) (#20)

* use env to control the language of doc (#24) (#25)

* Support TP-compatible Torch AMP and Update trainer API (#27)

* Add gradient accumulation, fix lr scheduler

* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)

* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes

* fixed trainer

* Revert "fixed trainer"

This reverts commit 2e0b0b7699.

* improved consistency between trainer, engine and schedule (#23)

Co-authored-by: 1SAA <c2h214748@gmail.com>

Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>

* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)

* add explanation for ViT example (#35) (#36)

* optimize communication of pipeline parallel

* fix grad clip for pipeline

Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>

* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)

* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset

* update api for better usability (#58)

update api for better usability

Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 15:08:29 +08:00
zbian 404ecbdcc6 Migrated project 2021-10-28 18:21:23 +02:00