updated collective ops api (#1054)

pull/1063/head
アマデウス 3 years ago committed by GitHub
parent 51b9a49655
commit 2c42b230f3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -13,7 +13,6 @@ from colossalai.core import global_context as gpc
def all_gather(tensor: Tensor,
dim: int,
parallel_mode: ParallelMode,
on_cpu: bool = False,
async_op: bool = False) -> Tensor:
r"""Gathers all tensors from the parallel group and concatenates them in a
specific dimension.
@ -26,7 +25,6 @@ def all_gather(tensor: Tensor,
tensor (:class:`torch.Tensor`): Tensor to be gathered.
dim (int): The dimension concatenating in.
parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication.
on_cpu (bool, optional): Whether to communicate with Gloo backend.
async_op (bool, optional): Whether operations are asynchronous.
Returns:
@ -43,7 +41,7 @@ def all_gather(tensor: Tensor,
shape[0] *= depth
out = torch.empty(shape, dtype=tensor.dtype, device=tensor.device)
temp = list(torch.chunk(out, depth, dim=0))
group = gpc.get_cpu_group(parallel_mode) if on_cpu else gpc.get_group(parallel_mode)
group = gpc.get_cpu_group(parallel_mode) if tensor.device.type == "cpu" else gpc.get_group(parallel_mode)
work = dist.all_gather(tensor_list=temp,
tensor=tensor.transpose(0, dim).contiguous(),
group=group,
@ -59,7 +57,6 @@ def reduce_scatter(tensor: Tensor,
dim: int,
parallel_mode: ParallelMode,
op: ReduceOp = ReduceOp.SUM,
on_cpu: bool = False,
async_op: bool = False) -> Tensor:
r"""Reduces all tensors then scatters it in a specific dimension to all
members in the parallel group.
@ -76,7 +73,6 @@ def reduce_scatter(tensor: Tensor,
should be included in [SUM, AVG, PRODUCT, MIN, MAX, BAND, BOR, BXOR].
More details about ReduceOp please refer to
`ReduceOp <https://pytorch.org/docs/stable/distributed.html#torch.distributed.ReduceOp>`_.
on_cpu (bool, optional): Whether to communicate with Gloo backend.
async_op (bool, optional): Whether operations are asynchronous.
Returns:
@ -90,7 +86,7 @@ def reduce_scatter(tensor: Tensor,
else:
temp = list(map(lambda x: x.contiguous(), torch.chunk(tensor, depth, dim=dim)))
out = torch.empty(temp[0].shape, dtype=tensor.dtype, device=tensor.device)
group = gpc.get_cpu_group(parallel_mode) if on_cpu else gpc.get_group(parallel_mode)
group = gpc.get_cpu_group(parallel_mode) if tensor.device.type == "cpu" else gpc.get_group(parallel_mode)
work = dist.reduce_scatter(output=out, input_list=temp, op=op, group=group, async_op=async_op)
if async_op:
return out, work
@ -101,7 +97,6 @@ def reduce_scatter(tensor: Tensor,
def all_reduce(tensor: Tensor,
parallel_mode: ParallelMode,
op: ReduceOp = ReduceOp.SUM,
on_cpu: bool = False,
async_op: bool = False) -> Tensor:
r"""Reduces the tensor data across whole parallel group in such a way that all get the final result.
@ -116,7 +111,6 @@ def all_reduce(tensor: Tensor,
should be included in [SUM, AVG, PRODUCT, MIN, MAX, BAND, BOR, BXOR].
More details about ReduceOp please refer to
`ReduceOp <https://pytorch.org/docs/stable/distributed.html#torch.distributed.ReduceOp>`_.
on_cpu (bool, optional): Whether to communicate with Gloo backend.
async_op (bool, optional): Whether operations are asynchronous.
Returns:
@ -129,7 +123,7 @@ def all_reduce(tensor: Tensor,
work = None
else:
out = tensor.contiguous()
group = gpc.get_cpu_group(parallel_mode) if on_cpu else gpc.get_group(parallel_mode)
group = gpc.get_cpu_group(parallel_mode) if tensor.device.type == "cpu" else gpc.get_group(parallel_mode)
work = dist.all_reduce(out, op=op, group=group, async_op=async_op)
if async_op:
return out, work
@ -137,7 +131,7 @@ def all_reduce(tensor: Tensor,
return out
def broadcast(tensor: Tensor, src: int, parallel_mode: ParallelMode, on_cpu: bool = False, async_op: bool = False):
def broadcast(tensor: Tensor, src: int, parallel_mode: ParallelMode, async_op: bool = False):
r"""Broadcast tensors to whole parallel group. Tensor must have the same
number of elements in all processes participating in the collective.
@ -149,7 +143,6 @@ def broadcast(tensor: Tensor, src: int, parallel_mode: ParallelMode, on_cpu: boo
tensor (:class:`torch.Tensor`): Tensor to be broadcast.
src (int): Source rank.
parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication.
on_cpu (bool, optional): Whether to communicate with Gloo backend.
async_op (bool, optional): Whether operations are asynchronous.
Returns:
@ -162,7 +155,7 @@ def broadcast(tensor: Tensor, src: int, parallel_mode: ParallelMode, on_cpu: boo
work = None
else:
out = tensor.contiguous()
group = gpc.get_cpu_group(parallel_mode) if on_cpu else gpc.get_group(parallel_mode)
group = gpc.get_cpu_group(parallel_mode) if tensor.device.type == "cpu" else gpc.get_group(parallel_mode)
work = dist.broadcast(out, src=src, group=group, async_op=async_op)
if async_op:
return out, work
@ -174,7 +167,6 @@ def reduce(tensor: Tensor,
dst: int,
parallel_mode: ParallelMode,
op: ReduceOp = ReduceOp.SUM,
on_cpu: bool = False,
async_op: bool = False):
r"""Reduce tensors across whole parallel group. Only the process with
rank ``dst`` is going to receive the final result.
@ -187,7 +179,6 @@ def reduce(tensor: Tensor,
tensor (:class:`torch.Tensor`): Tensor to be reduced.
dst (int): Destination rank.
parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication.
on_cpu (bool, optional): Whether to communicate with Gloo backend.
async_op (bool, optional): Whether operations are asynchronous.
Returns:
@ -200,7 +191,7 @@ def reduce(tensor: Tensor,
work = None
else:
out = tensor.contiguous()
group = gpc.get_cpu_group(parallel_mode) if on_cpu else gpc.get_group(parallel_mode)
group = gpc.get_cpu_group(parallel_mode) if tensor.device.type == "cpu" else gpc.get_group(parallel_mode)
work = dist.reduce(out, dst=dst, op=op, group=group, async_op=async_op)
if async_op:
return out, work

Loading…
Cancel
Save