[autoparallel]integrate auto parallel feature with new tracer (#3408)

* [autoparallel] integrate new analyzer in module level

* unify the profiling method

* polish

* fix no codegen bug

* fix pass bug

* fix liveness test

* polish
pull/3445/head
YuliangLiu0306 2 years ago committed by GitHub
parent 573af84184
commit ffcdbf0f65
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -235,7 +235,28 @@ def matmul_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
# Inputs contains the shapes of two matrices.
input_shapes = [v.shape for v in inputs]
assert len(input_shapes) == 2, input_shapes
# There are three cases: 1) gemm, 2) gemv, 3) dot
if all(len(shape) == 2 for shape in input_shapes):
# gemm
assert input_shapes[0][-1] == input_shapes[1][-2], input_shapes
elif all(len(shape) == 1 for shape in input_shapes):
# dot
assert input_shapes[0][0] == input_shapes[1][0], input_shapes
# expand shape
input_shapes[0] = torch.Size([1, input_shapes[0][0]])
input_shapes[1] = torch.Size([input_shapes[1][0], 1])
else:
# gemv
if len(input_shapes[0]) == 1:
assert input_shapes[0][0] == input_shapes[1][-2], input_shapes
input_shapes.reverse()
else:
assert input_shapes[1][0] == input_shapes[0][-1], input_shapes
# expand the shape of the vector to [batch size, 1]
input_shapes[-1] = torch.Size([input_shapes[-1][-1], 1])
flops = reduce(operator.mul, input_shapes[0]) * input_shapes[-1][-1]
return flops

@ -1,8 +1,12 @@
from typing import Any, Callable, Dict, Iterable, List, Tuple
import torch
try:
from torch.fx.graph import CodeGen
except:
pass
from torch.fx.graph import (
CodeGen,
PythonCode,
_custom_builtins,
_format_target,
@ -48,8 +52,8 @@ def _end_of_ckpt(node: Node, ckpt_level: int) -> bool:
"""
Check if the node could end the ckpt region at `ckpt_level`
"""
if len(node.meta['info'].to_recompute) > ckpt_level:
return node.meta['info'].to_recompute[ckpt_level] is not None
if len(node.meta['info'].activation_checkpoint) > ckpt_level:
return node.meta['info'].activation_checkpoint[ckpt_level] is not None
return True
@ -90,8 +94,8 @@ def _find_nested_ckpt_regions(node_list: List[Node], ckpt_level: int = 0):
current_region = None
for idx, node in enumerate(node_list):
if len(node.meta['info'].to_recompute) > ckpt_level:
act_ckpt_label = node.meta['info'].to_recompute[ckpt_level]
if len(node.meta['info'].activation_checkpoint) > ckpt_level:
act_ckpt_label = node.meta['info'].activation_checkpoint[ckpt_level]
# this activation checkpoint label is not set yet
# meaning this is the first node of the activation ckpt region
@ -152,12 +156,12 @@ def emit_ckpt_func(body,
# label given by each layer, e.g. if you are currently at level (0, 1, 1)
# the label will be '0_1_1'
label = "_".join([str(idx) for idx in node_list[0].meta['info'].to_recompute[:ckpt_level + 1]])
label = "_".join([str(idx) for idx in node_list[0].meta['info'].activation_checkpoint[:ckpt_level + 1]])
ckpt_fn_def = _gen_ckpt_fn_def(label, inputs)
ckpt_func.append(f'{ckpt_fn_def}\n')
# if there is more level to fetch
if ckpt_level + 1 < max(map(lambda node: len(node.meta['info'].to_recompute), node_list)):
if ckpt_level + 1 < max(map(lambda node: len(node.meta['info'].activation_checkpoint), node_list)):
ckpt_regions = _find_nested_ckpt_regions(node_list, ckpt_level + 1)
start_idx = [item[0] for item in ckpt_regions]
end_idx = [item[1] for item in ckpt_regions]
@ -215,7 +219,6 @@ def emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node_func,
ckpt_regions = _find_nested_ckpt_regions(nodes, 0)
start_idx = [item[0] for item in ckpt_regions]
end_idx = [item[1] for item in ckpt_regions]
node_list = list(nodes)
node_idx = 0

@ -112,7 +112,7 @@ class MetaInfo:
# should keep the same whenever manipulated
# ============================= Invariant ==================================
to_recompute: Tuple[torch.Tensor] = () # (region_0, region_1, ...) support nested codegen
activation_checkpoint: Tuple[torch.Tensor] = () # (region_0, region_1, ...) support nested codegen
to_offload: Optional[bool] = False
sharding_spec: str = 'RR'

@ -237,7 +237,14 @@ class ShapeProp(torch.fx.Interpreter):
Returns:
Any: The value returned from executing the Module
"""
wrap_fn = lambda elem: MetaTensor(elem, device=device)
# wrap_fn = lambda elem: MetaTensor(elem, device=device)
def wrap_fn(elem, device=device):
if isinstance(elem, torch.Tensor):
return MetaTensor(elem, device=device)
else:
return elem
with self._mode:
return super().run(*tree_map(wrap_fn, args))

@ -21,69 +21,111 @@ def linear_impl(input, weight, bias=None):
@register_tracer_impl(F.conv1d, name='_bias_addition_impl')
def conv1d_impl(input, weight, **kwargs):
bias = getattr(kwargs, 'bias', None)
def conv1d_impl(input, weight, bias=None, stride=_single(1), padding=_single(0), dilation=_single(1), groups=1):
if bias is None:
return F.conv1d(input, weight, **kwargs)
return F.conv1d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups)
else:
new_kwargs = kwargs
new_kwargs['bias'] = None
return F.conv1d(input, weight, **kwargs) + bias.reshape((-1, 1))
return F.conv1d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups) + bias.reshape(
(-1, 1))
@register_tracer_impl(F.conv2d, name='_bias_addition_impl')
def conv2d_impl(input, weight, **kwargs):
bias = getattr(kwargs, 'bias', None)
def conv2d_impl(input, weight, bias=None, stride=_pair(1), padding=_pair(0), dilation=_pair(1), groups=1):
if bias is None:
return F.conv2d(input, weight, **kwargs)
return F.conv2d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups)
else:
new_kwargs = kwargs
new_kwargs['bias'] = None
return F.conv2d(input, weight, **kwargs) + bias.reshape((-1, 1, 1))
return F.conv2d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups) + bias.reshape(
(-1, 1, 1))
@register_tracer_impl(F.conv3d, name='_bias_addition_impl')
def conv3d_impl(input, weight, **kwargs):
bias = getattr(kwargs, 'bias', None)
def conv3d_impl(input, weight, bias=None, stride=_triple(1), padding=_triple(0), dilation=_triple(1), groups=1):
if bias is None:
return F.conv3d(input, weight, **kwargs)
return F.conv3d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups)
else:
new_kwargs = kwargs
new_kwargs['bias'] = None
return F.conv3d(input, weight, **new_kwargs) + bias.reshape((-1, 1, 1, 1))
return F.conv3d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups) + bias.reshape(
(-1, 1, 1, 1))
@register_tracer_impl(F.conv_transpose1d, name='_bias_addition_impl')
def conv_transpose1d_impl(input, weight, **kwargs):
bias = getattr(kwargs, 'bias', None)
def conv_transpose1d_impl(input,
weight,
bias=None,
stride=_single(1),
padding=_single(0),
output_padding=_single(0),
groups=1,
dilation=_single(1)):
if bias is None:
return F.conv_transpose1d(input, weight, **kwargs)
return F.conv_transpose1d(input,
weight,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
dilation=dilation)
else:
new_kwargs = kwargs
new_kwargs['bias'] = None
return F.conv_transpose1d(input, weight, **new_kwargs) + bias.reshape((-1, 1))
return F.conv_transpose1d(input,
weight,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
dilation=dilation) + bias.reshape((-1, 1))
@register_tracer_impl(F.conv_transpose2d, name='_bias_addition_impl')
def conv_transpose2d_impl(input, weight, **kwargs):
bias = getattr(kwargs, 'bias', None)
def conv_transpose2d_impl(input,
weight,
bias=None,
stride=_pair(1),
padding=_pair(0),
output_padding=_pair(0),
groups=1,
dilation=_pair(1)):
if bias is None:
return F.conv_transpose2d(input, weight, **kwargs)
return F.conv_transpose2d(input,
weight,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
dilation=dilation)
else:
new_kwargs = kwargs
new_kwargs['bias'] = None
return F.conv_transpose2d(input, weight, **new_kwargs) + bias.reshape((-1, 1, 1))
return F.conv_transpose2d(input,
weight,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
dilation=dilation) + bias.reshape((-1, 1, 1))
@register_tracer_impl(F.conv_transpose3d, name='_bias_addition_impl')
def conv_transpose3d_impl(input, weight, **kwargs):
bias = getattr(kwargs, 'bias', None)
def conv_transpose3d_impl(input,
weight,
bias=None,
stride=_triple(1),
padding=_triple(0),
output_padding=_triple(0),
groups=1,
dilation=_triple(1)):
if bias is None:
return F.conv_transpose3d(input, weight, **kwargs)
return F.conv_transpose3d(input,
weight,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
dilation=dilation)
else:
new_kwargs = kwargs
new_kwargs['bias'] = None
return F.conv_transpose3d(input, weight, **new_kwargs) + bias.reshape((-1, 1, 1, 1))
return F.conv_transpose3d(input,
weight,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
dilation=dilation) + bias.reshape((-1, 1, 1, 1))
@register_tracer_impl(torch.addmm, name='_bias_addition_impl')

@ -155,7 +155,7 @@ class ColoTracer(Tracer):
def create_node(self, *args, **kwargs) -> Node:
node = super().create_node(*args, **kwargs)
n_info = MetaInfo(node, mod_dir=self.mod_dir, to_recompute=tuple(self.ckpt_regions))
n_info = MetaInfo(node, mod_dir=self.mod_dir, activation_checkpoint=tuple(self.ckpt_regions))
return node
def trace(self,

@ -1,3 +1,3 @@
from .meta_registry import *
from .metainfo import *
from .registry import meta_register
from .shard_metainfo import *

@ -2,9 +2,9 @@ from typing import Callable, List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import ewise_flop_counter as elementwise_flop_counter
from colossalai._analyzer.fx.node_util import compute_size_in_bytes as activation_size
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import elementwise_flop_counter
from ..registry import meta_register

@ -2,9 +2,9 @@ from typing import List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes as activation_size
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..constants import BCAST_FUNC_OP, NO_SAVE_ACTIVATION
from ..registry import meta_register
@ -17,7 +17,7 @@ def binary_elementwise_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, Train
"""Meta information generator for binary elementwise operations
NOTE: Some of the binary elementwise operations will discard the input activation after computation, as they
don't need those tensors for back propagation, for example, if there are two tensors being sent for `torch.add`,
they will be discarded right after add operation is done. We create a simple API in `MetaInfo` class to identify
they will be discarded right after add operation is done. We create a simple API in `ShardMetaInfo` class to identify
this behavior, it is critical for better memory estimation.
Returns:

@ -2,6 +2,8 @@ from typing import Callable, Dict, List, Tuple, Union
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
MemoryCost,
OperationData,
@ -10,8 +12,6 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
StrategiesVector,
TrainCycleItem,
)
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from colossalai.tensor.sharding_spec import ShardingSpec
from ..registry import meta_register
@ -110,16 +110,16 @@ def convnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
# calculate memory cost
# TODO: use profiler to check conv temp memory
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(
activation=activation_size([input_tensor, output_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]) if has_bias else activation_size(weight_tensor),
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, output_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor])
if has_bias else compute_size_in_bytes(weight_tensor),
temp=0,
buffer=0)
bwd_memory_cost = MemoryCost(
activation=activation_size([input_tensor, weight_tensor, bias_tensor])
if has_bias else activation_size([input_tensor, weight_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]) if has_bias else activation_size(weight_tensor),
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, weight_tensor, bias_tensor])
if has_bias else compute_size_in_bytes([input_tensor, weight_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor])
if has_bias else compute_size_in_bytes(weight_tensor),
temp=0,
buffer=0)

@ -2,9 +2,9 @@ from typing import List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..registry import meta_register
@ -34,11 +34,11 @@ def embedding_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem
# NOTE: during the backward phase of torch.nn.Embedding, it seems when the input is large enough, it will
# have a temp memory which is kind of weird and we don't know the reason yet, so currently we just assume
# that there will be no temp memory, as the temp memory is significantly smaller than the gradient memory
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, output_tensor]),
parameter=0,
temp=0,
buffer=0)
bwd_memory_cost = MemoryCost(activation=activation_size([weight_tensor]), parameter=0, temp=0, buffer=0)
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([weight_tensor]), parameter=0, temp=0, buffer=0)
total_memory_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation)

@ -3,6 +3,8 @@ from typing import Callable, Dict, List, Tuple, Union
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
MemoryCost,
OperationData,
@ -11,8 +13,6 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
StrategiesVector,
TrainCycleItem,
)
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from colossalai.tensor.sharding_spec import ShardingSpec
from ..registry import meta_register
@ -112,14 +112,14 @@ def linear_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
# NOTE: Linear don't have buffer and temp in forward and backward phase
# the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor and bias_tensor
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, output_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=0,
buffer=0)
# the backward activation cost is the size of input_tensor, weight_tensor and bias_tensor, parameter cost is 0
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, weight_tensor, bias_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, weight_tensor, bias_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=0,
buffer=0)
@ -148,14 +148,14 @@ def linear_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
# NOTE: Linear don't have buffer and temp in forward and backward phase
# the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
parameter=activation_size(weight_tensor),
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, output_tensor]),
parameter=compute_size_in_bytes(weight_tensor),
temp=0,
buffer=0)
# the backward activation cost is the size of input_tensor and weight_tensor, parameter cost is 0
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, weight_tensor]),
parameter=activation_size(weight_tensor),
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, weight_tensor]),
parameter=compute_size_in_bytes(weight_tensor),
temp=0,
buffer=0)
@ -210,48 +210,48 @@ def matmul_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
# Check dimension
if all(len(tensor.shape) == 1 for tensor in input_tensors):
# Dot
fwd_compute_cost = flop_mapping[torch.ops.aten.dot.default](input_tensors, output_tensors)
fwd_compute_cost = flop_mapping[torch.ops.aten.matmul.default](input_tensors, output_tensors)
bwd_compute_cost = flop_mapping[torch.ops.aten.mul.Tensor](input_tensors[0], output_tensors) * 2
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors), parameter=0, temp=0, buffer=0)
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors), parameter=0, temp=0, buffer=0)
elif len(input_tensors[0].shape) >= 2 and len(input_tensors[1].shape) == 1:
# gemv case 1: matrix-vector multiplication
# &
# batched gemv case 1: batched matrix-vector multiplication
fwd_compute_cost = flop_mapping[torch.ops.aten.mv.default](
fwd_compute_cost = flop_mapping[torch.ops.aten.matmul.default](
[input_tensors[0].reshape(-1, input_tensors[0].shape[-1]), input_tensors[1]], output_tensors)
# combine the dimensions of output
bwd_compute_cost = flop_mapping[torch.ops.aten.mul.Tensor](
[output_tensors[0].reshape(-1), input_tensors[1]],
output_tensors) + \
flop_mapping[torch.ops.aten.mv.default](
flop_mapping[torch.ops.aten.matmul.default](
[input_tensors[0].reshape(-1, input_tensors[0].shape[-1]).transpose(0, 1), output_tensors[0].reshape(-1)],
output_tensors)
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors), parameter=0, temp=0, buffer=0)
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors), parameter=0, temp=0, buffer=0)
elif len(input_tensors[0].shape) == 1 and len(input_tensors[1].shape) == 2:
# gemv case 2: vector-matrix multiplication
fwd_compute_cost = flop_mapping[torch.ops.aten.mv.default](input_tensors, output_tensors)
fwd_compute_cost = flop_mapping[torch.ops.aten.matmul.default](input_tensors, output_tensors)
bwd_compute_cost = flop_mapping[torch.ops.aten.mul.Tensor]([output_tensors[0], input_tensors[0]], output_tensors) + \
flop_mapping[torch.ops.aten.mv.default]([input_tensors[1], output_tensors[0]], output_tensors)
flop_mapping[torch.ops.aten.matmul.default]([input_tensors[1], output_tensors[0]], output_tensors)
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors),
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors),
parameter=0,
temp=activation_size(input_tensors[1]),
temp=compute_size_in_bytes(input_tensors[1]),
buffer=0)
elif len(input_tensors[0].shape) == 1 and len(input_tensors[1].shape) >= 3:
# batched gemv case 2: vector-batched matrix multiplication
fwd_compute_cost = flop_mapping[torch.ops.aten.mv.default](
fwd_compute_cost = flop_mapping[torch.ops.aten.matmul.default](
[input_tensors[1].transpose(-2, -1).reshape(-1, input_tensors[1].shape[-2]), input_tensors[0]],
[output_tensors[0].reshape(-1)])
@ -260,15 +260,15 @@ def matmul_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
[output_tensors[0].reshape(-1), input_tensors[0]],
output_tensors
) + \
flop_mapping[torch.ops.aten.mv.default](
flop_mapping[torch.ops.aten.matmul.default](
[input_tensors[1].transpose(-2, -1).reshape(-1, input_tensors[1].shape[-2]).transpose(0, 1), output_tensors[0].reshape(-1)],
output_tensors
)
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors + [input_tensors[1]]))
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors[0]),
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors + [input_tensors[1]]))
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors[0]),
parameter=0,
temp=activation_size(input_tensors[1]),
temp=compute_size_in_bytes(input_tensors[1]),
buffer=0)
elif len(input_tensors[0].shape) >= 2 and len(input_tensors[1].shape) == 2:
@ -287,8 +287,8 @@ def matmul_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
[input_tensors[0].reshape(-1, input_tensors[0].shape[-1])]
)
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors), parameter=0, temp=0, buffer=0)
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors), parameter=0, temp=0, buffer=0)
elif len(input_tensors[0].shape) == 2 and len(input_tensors[1].shape) >= 3:
# batched gemm case 2: matrix-batched matrix multiplication
@ -306,11 +306,12 @@ def matmul_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
[input_tensors[1].transpose(-2, -1).reshape(-1, input_tensors[1].shape[-2])]
)
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors) + activation_size(input_tensors[1]),
temp=activation_size(output_tensors))
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors[0]),
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors) +
compute_size_in_bytes(input_tensors[1]),
temp=compute_size_in_bytes(output_tensors))
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors[0]),
parameter=0,
temp=activation_size(input_tensors[1]) + activation_size(output_tensors))
temp=compute_size_in_bytes(input_tensors[1]) + compute_size_in_bytes(output_tensors))
elif all(len(tensor.shape) >= 3 for tensor in input_tensors):
# Batched matrix-batched matrix multiplication
@ -351,8 +352,8 @@ def matmul_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
[input_tensors[0].reshape(-1, input_dim_00, input_dim_01)]
)
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors))
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors))
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors))
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors))
else:
# Case 2: batch dimensions are different
@ -381,10 +382,10 @@ def matmul_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
)
fwd_mem_cost = MemoryCost(
activation=activation_size([output_tensors[0], extended_input_0, extended_input_1]))
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors) -
activation_size([extended_input_0, extended_input_1]),
temp=activation_size([extended_input_0, extended_input_1]))
activation=compute_size_in_bytes([output_tensors[0], extended_input_0, extended_input_1]))
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors) -
compute_size_in_bytes([extended_input_0, extended_input_1]),
temp=compute_size_in_bytes([extended_input_0, extended_input_1]))
# compute cost
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)

@ -4,8 +4,6 @@ from typing import List, Tuple
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..registry import meta_register

@ -2,6 +2,8 @@ from typing import Callable, Dict, List, Tuple, Union
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
MemoryCost,
OperationData,
@ -10,8 +12,6 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
StrategiesVector,
TrainCycleItem,
)
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from colossalai.tensor.sharding_spec import ShardingSpec
from ..registry import meta_register
@ -77,17 +77,18 @@ def batchnormnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleIt
# calculate memory cost
# the fwd activation cost is output plus saved mean and saved inv std
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor, mean_tensor, var_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes(
[input_tensor, output_tensor, mean_tensor, var_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=0,
buffer=activation_size([mean_tensor, var_tensor]))
buffer=compute_size_in_bytes([mean_tensor, var_tensor]))
# the bwd memory cost is quite tricky here, BatchNorm will remove saved mean
# and saved inv std during backward phase
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
temp=activation_size([mean_tensor, var_tensor]),
buffer=activation_size([mean_tensor, var_tensor]))
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=compute_size_in_bytes([mean_tensor, var_tensor]),
buffer=compute_size_in_bytes([mean_tensor, var_tensor]))
# total cost is the sum of forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
@ -131,15 +132,16 @@ def layernorm_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem
# memory cost
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor, weight_tensor, bias_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes(
[input_tensor, output_tensor, weight_tensor, bias_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=0,
buffer=activation_size([running_mean, running_var]))
buffer=compute_size_in_bytes([running_mean, running_var]))
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, weight_tensor, bias_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
temp=activation_size([running_mean, running_var]),
buffer=activation_size([running_mean, running_var]))
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, weight_tensor, bias_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=compute_size_in_bytes([running_mean, running_var]),
buffer=compute_size_in_bytes([running_mean, running_var]))
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter,

@ -2,9 +2,9 @@ from typing import List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..registry import meta_register
@ -52,8 +52,8 @@ def avgpool_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem,
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
fwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=activation_size(output_tensor))
bwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=activation_size(input_tensor))
fwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=compute_size_in_bytes(output_tensor))
bwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=compute_size_in_bytes(input_tensor))
# total cost
total_mem_cost = MemoryCost(activation=fwd_mem_cost.activation + bwd_mem_cost.activation)
@ -114,11 +114,11 @@ def maxpool_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem,
# calculate memory cost
# NOTE: the index matrix will be discarded in backward phase
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_mem_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor, index_matrix]))
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, output_tensor, index_matrix]))
# temp memory for backward is the index matrix to be discarded
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensor) - activation_size(index_matrix),
temp=activation_size(index_matrix))
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensor) - compute_size_in_bytes(index_matrix),
temp=compute_size_in_bytes(index_matrix))
# total cost
total_mem_cost = MemoryCost(activation=fwd_mem_cost.activation + bwd_mem_cost.activation, temp=bwd_mem_cost.temp)

@ -2,9 +2,9 @@ from typing import Callable, List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..registry import meta_register
@ -35,11 +35,11 @@ def tensor_related_metainfo(bwd_mem_out_factor: float = 1, bwd_mem_tmp_factor: f
# memory costs
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_mem_cost = MemoryCost(activation=activation_size(outputs) * 2, parameter=0, temp=0, buffer=0)
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(outputs) * 2, parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=activation_size(outputs) * bwd_mem_out_factor,
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(outputs) * bwd_mem_out_factor,
parameter=0,
temp=activation_size(outputs) * bwd_mem_tmp_factor,
temp=compute_size_in_bytes(outputs) * bwd_mem_tmp_factor,
buffer=0)
total_mem_cost = MemoryCost(activation=fwd_mem_cost.activation + bwd_mem_cost.activation,

@ -2,9 +2,9 @@ from typing import List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes as activation_size
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..registry import meta_register

@ -15,11 +15,11 @@ from colossalai.tensor.sharding_spec import ShardingSpec
from .constants import INPLACE_MODULE, INPLACE_OPS, NO_SAVE_ACTIVATION
from .registry import meta_register
__all__ = ['MetaInfo']
__all__ = ['ShardMetaInfo']
class MetaInfo:
"""MetaInfo class
class ShardMetaInfo:
"""ShardMetaInfo class
This class is used to store meta info based on sharding strategy and the given
target function.
"""
@ -46,9 +46,9 @@ class MetaInfo:
# target function
self._target = target
# compute metainfo if possible
# compute shard_metainfo if possible
if self._strategy is not None and self._target is not None:
self.compute_metainfo()
self.compute_shard_metainfo()
@property
def strategy(self) -> ShardingStrategy:
@ -62,13 +62,13 @@ class MetaInfo:
def strategy(self, strategy: ShardingStrategy) -> None:
self._strategy = strategy
if self._strategy is not None and self._target is not None:
self.compute_metainfo()
self.compute_shard_metainfo()
@target.setter
def target(self, target: Callable) -> None:
self._target = target
if self._strategy is not None and self._target is not None:
self.compute_metainfo()
self.compute_shard_metainfo()
def compute_sharded_opdata(self, operation_data: OperationData, sharding_spec: ShardingSpec):
"""
@ -93,7 +93,7 @@ class MetaInfo:
return op_data
def compute_metainfo(self):
def compute_shard_metainfo(self):
"""
Compute meta info based on sharding strategy and the given target function.
"""

@ -4,7 +4,7 @@ import torch
from torch.fx import GraphModule
from torch.fx.node import Node
from colossalai.auto_parallel.meta_profiler import MetaInfo
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply, runtime_comm_spec_apply
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, TrainCycleItem
from colossalai.tensor.comm_spec import CommSpec
@ -14,15 +14,15 @@ from colossalai.tensor.sharding_spec import ShardingSpec
shape_consistency_manager = ShapeConsistencyManager()
def _construct_meta_info(node: Node, origin_sharding_spec: ShardingSpec,
target_sharding_spec: ShardingSpec) -> MetaInfo:
def _construct_shard_meta_info(node: Node, origin_sharding_spec: ShardingSpec,
target_sharding_spec: ShardingSpec) -> ShardMetaInfo:
# get comm_action_sequence and total_cost from shape_consistency_manager
_, comm_action_sequence, total_cost = shape_consistency_manager.shape_consistency(
origin_sharding_spec, target_sharding_spec)
meta_info = MetaInfo()
meta_info = ShardMetaInfo()
# NOTE: the cost in shape_consistency_manager.mem_cost is the count in number of numel
# get mem cost for MetaInfo
# get mem cost for ShardMetaInfo
mem_cost = shape_consistency_manager.mem_cost(comm_action_sequence)
# extract user that has _meta_data and extract element length
input_node = next(n for n in node._input_nodes if hasattr(n, '_meta_data'))
@ -36,12 +36,12 @@ def _construct_meta_info(node: Node, origin_sharding_spec: ShardingSpec,
meta_info.memory_cost = mem_cost
# get computation cost for MetaInfo
# get computation cost for ShardMetaInfo
meta_info.compute_cost = TrainCycleItem(total_cost['forward'] * element_length,
total_cost['backward'] * element_length,
total_cost['total'] * element_length)
# get tensor shape for MetaInfo
# get tensor shape for ShardMetaInfo
origin_sharding_spec: ShardingSpec
target_sharding_spec: ShardingSpec
input_shape = origin_sharding_spec.get_sharded_shape_per_device()
@ -54,7 +54,7 @@ def _construct_meta_info(node: Node, origin_sharding_spec: ShardingSpec,
return meta_info
def _runtime_apply_meta_info(node: Node, origin_spec_dict, sharding_spec_dict) -> MetaInfo:
def _runtime_apply_meta_info(node: Node, origin_spec_dict, sharding_spec_dict) -> ShardMetaInfo:
"""
This method is used to construct `MetaInto` for shape consistency node
"""
@ -65,17 +65,17 @@ def _runtime_apply_meta_info(node: Node, origin_spec_dict, sharding_spec_dict) -
origin_sharding_spec, target_sharding_spec = origin_spec_dict[node_index], sharding_spec_dict[node_index][
user_node_index]
return _construct_meta_info(node, origin_sharding_spec, target_sharding_spec)
return _construct_shard_meta_info(node, origin_sharding_spec, target_sharding_spec)
def _runtime_comm_spec_apply_meta_info(node: Node, comm_actions_dict: Dict) -> MetaInfo:
def _runtime_comm_spec_apply_meta_info(node: Node, comm_actions_dict: Dict) -> ShardMetaInfo:
# extract node_index and op_data_name
node_index, op_data_name = node.args[2], node.args[3]
comm_action = comm_actions_dict[node_index][op_data_name]
if isinstance(comm_action.comm_spec, CommSpec):
# this case is for all_reduce, there will be no memory cost
meta_info = MetaInfo()
meta_info = ShardMetaInfo()
meta_info.memory_cost = TrainCycleItem(MemoryCost(), MemoryCost(), MemoryCost)
output_node = next(n for n in node.users if hasattr(n, '_meta_data'))
element_length = output_node._meta_data.element_size()
@ -93,7 +93,7 @@ def _runtime_comm_spec_apply_meta_info(node: Node, comm_actions_dict: Dict) -> M
# this case will be handled by shape consistency manager
origin_sharding_spec, target_sharding_spec = comm_action.comm_spec['src_spec'], comm_action.comm_spec[
'tgt_spec']
meta_info = _construct_meta_info(node, origin_sharding_spec, target_sharding_spec)
meta_info = _construct_shard_meta_info(node, origin_sharding_spec, target_sharding_spec)
return meta_info
@ -105,9 +105,9 @@ def comm_metainfo_pass(gm: GraphModule, sharding_spec_dict: Dict, origin_spec_di
"""
for node in gm.graph.nodes:
if node.target == runtime_apply:
setattr(node, 'best_metainfo', _runtime_apply_meta_info(node, origin_spec_dict, sharding_spec_dict))
setattr(node, 'best_strategy_info', _runtime_apply_meta_info(node, origin_spec_dict, sharding_spec_dict))
elif node.target == runtime_comm_spec_apply:
setattr(node, 'best_metainfo', _runtime_comm_spec_apply_meta_info(node, comm_actions_dict))
setattr(node, 'best_strategy_info', _runtime_comm_spec_apply_meta_info(node, comm_actions_dict))
else:
pass
return gm

@ -7,7 +7,7 @@ import torch.fx
from torch.fx import GraphModule
from torch.fx.node import Node
from colossalai.auto_parallel.meta_profiler import MetaInfo
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo
from colossalai.auto_parallel.passes.constants import OUTPUT_SAVED_MOD, OUTPUT_SAVED_OPS
from colossalai.fx._compatibility import compatibility
from colossalai.fx.profiler import GraphInfo
@ -96,12 +96,12 @@ class MetaInfoProp:
"""
Handle other kind of nodes
"""
assert hasattr(node, 'best_metainfo'), f"Cannot find best_metainfo in node {node}, {node.op}"
assert hasattr(node, 'best_strategy_info'), f"Cannot find best_strategy_info in node {node}, {node.op}"
graph_info = GraphInfo()
meta_info = node.best_metainfo
meta_info: MetaInfo
meta_info = node.best_strategy_info
meta_info: ShardMetaInfo
# set data_ptr for input_tensor in MetaInfo class
# set data_ptr for input_tensor in ShardMetaInfo class
input_tensors: List[torch.Tensor] = meta_info.fwd_in
buffer_tensors: List[torch.Tensor] = meta_info.fwd_buffer
output_tensors: List[torch.Tensor] = meta_info.fwd_out

@ -4,7 +4,7 @@ from typing import Dict, List
import torch
from torch.fx.node import Node
from colossalai.auto_parallel.meta_profiler import MetaInfo
from colossalai._analyzer.fx.node_util import MetaInfo
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
CommAction,
CommType,
@ -128,9 +128,10 @@ def _shape_consistency_apply(gm: torch.fx.GraphModule):
runtime_apply,
args=(node, origin_dict_node, input_dict_node,
node_to_index_dict[node], user_node_index))
if 'activation_checkpoint' in user_node.meta:
shape_consistency_node.meta['activation_checkpoint'] = user_node.meta['activation_checkpoint']
if hasattr(user_node.meta['info'], 'activation_checkpoint'):
MetaInfo(shape_consistency_node,
mod_dir=user_node.meta['info'].mod_dir,
activation_checkpoint=tuple(user_node.meta['info'].activation_checkpoint))
new_args = list(user_node.args)
new_kwargs = dict(user_node.kwargs)
# the origin node may be a positional argument or key word argument of user node
@ -210,9 +211,10 @@ def _comm_spec_apply(gm: torch.fx.GraphModule):
# substitute the origin node with comm_spec_apply_node
new_kwargs[str(node)] = comm_spec_apply_node
user.kwargs = new_kwargs
if 'activation_checkpoint' in node.meta:
comm_spec_apply_node.meta['activation_checkpoint'] = node.meta['activation_checkpoint']
if hasattr(node.meta['info'], 'activation_checkpoint'):
MetaInfo(comm_spec_apply_node,
mod_dir=node.meta['info'].mod_dir,
activation_checkpoint=tuple(node.meta['info'].activation_checkpoint))
return gm

@ -6,6 +6,7 @@ import torch
from torch.fx import symbolic_trace
from torch.fx.node import Node
from colossalai._analyzer.fx.node_util import MetaInfo
from colossalai.auto_parallel.tensor_shard.constants import RESHAPE_FUNC_OP
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
CommAction,
@ -74,9 +75,9 @@ def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int],
origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].get_sharding_spec_by_name(
str(node))
# attach the corresponding metainfo if node has the attribute `metainfo_vector`
if hasattr(node, 'metainfo_vector'):
setattr(node, 'best_metainfo', node.metainfo_vector[strategy_index])
# attach the corresponding metainfo if node has the attribute `strategies_info`
if hasattr(node, 'strategies_info'):
setattr(node, 'best_strategy_info', node.strategies_info[strategy_index])
# the dict to get input sharding specs of user node
sharding_spec_convert_dict = {}
@ -172,8 +173,11 @@ def size_value_converting_pass(gm: torch.fx.GraphModule, device_mesh: DeviceMesh
# It will be used to replace the original node with processing node in slice object
node_pairs[node] = size_processing_node
size_processing_node._meta_data = node._meta_data
if 'activation_checkpoint' in node.meta:
size_processing_node.meta['activation_checkpoint'] = node.meta['activation_checkpoint']
if hasattr(node.meta['info'], 'activation_checkpoint'):
MetaInfo(size_processing_node,
mod_dir=node.meta['info'].mod_dir,
activation_checkpoint=tuple(node.meta['info'].activation_checkpoint))
user_list = list(node.users.keys())
for user in user_list:

@ -6,6 +6,10 @@ import torch.nn as nn
from torch.fx import GraphModule
from torch.fx.graph import Graph
from colossalai._analyzer.fx.codegen import ActivationCheckpointCodeGen
from colossalai._analyzer.fx.graph_module import ColoGraphModule
from colossalai._analyzer.fx.passes import shape_prop_pass
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass
from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass
from colossalai.auto_parallel.tensor_shard.options import DataloaderOption, ShardOption, SolverOptions, SolverPerference
@ -13,8 +17,6 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import CommAction
from colossalai.auto_parallel.tensor_shard.solver import CostGraph, GraphAnalyser, Solver, StrategiesConstructor
from colossalai.device.alpha_beta_profiler import AlphaBetaProfiler
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.tracer import ColoTracer
from colossalai.tensor.sharding_spec import ShardingSpec
@ -126,6 +128,7 @@ def solve_solution(gm: ColoGraphModule, strategy_constructor: StrategiesConstruc
def transform_to_sharded_model(gm: ColoGraphModule,
meta_args: Dict,
solution: List[int],
device_mesh: DeviceMesh,
strategies_constructor: StrategiesConstructor,
@ -142,6 +145,7 @@ def transform_to_sharded_model(gm: ColoGraphModule,
strategies_constructor,
overlap=overlap)
gm = runtime_apply_pass(gm)
shape_prop_pass(gm, *meta_args.values(), sharding_spec_dict, origin_spec_dict, comm_actions_dict)
gm.recompile()
sharding_spec_dicts = (sharding_spec_dict, origin_spec_dict, comm_actions_dict)
@ -243,10 +247,13 @@ def initialize_model(model: nn.Module,
solution will be used to debug or help to analyze the sharding result. Therefore, we will not just
return a series of integers, but return the best strategies.
'''
tracer = ColoTracer(trace_act_ckpt=True)
tracer = ColoTracer(trace_act_ckpt=True, bias_addition_split=True)
graph = tracer.trace(root=model, meta_args=meta_args)
graph.set_codegen(ActivationCheckpointCodeGen())
gm = ColoGraphModule(model, graph, model.__class__.__name__)
shape_prop_pass(gm, *meta_args.values())
gm.recompile()
strategies_constructor = build_strategy_constructor(graph,
@ -261,7 +268,9 @@ def initialize_model(model: nn.Module,
if save_solver_solution:
torch.save(solution, solution_path)
gm, sharding_spec_dicts = transform_to_sharded_model(gm, solution, device_mesh, strategies_constructor, overlap)
gm, sharding_spec_dicts = transform_to_sharded_model(gm, meta_args, solution, device_mesh, strategies_constructor,
overlap)
model_to_return = ModuleWrapper(gm, *sharding_spec_dicts)
if return_solution:

@ -2,8 +2,6 @@ from typing import Dict, List
import torch
from colossalai.auto_parallel.meta_profiler.metainfo import MetaInfo
from ..sharding_strategy import OperationData, OperationDataType, StrategiesVector
from .node_handler import MetaInfoModuleHandler, ModuleHandler
from .registry import operator_registry

@ -4,7 +4,7 @@ from typing import Dict, List, Tuple, Union
import torch
from torch.fx.node import Node
from colossalai.auto_parallel.meta_profiler.metainfo import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler.shard_metainfo import ShardMetaInfo, meta_register
from colossalai.auto_parallel.tensor_shard.options import ShardOption, SolverPerference
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
OperationData,
@ -258,7 +258,7 @@ class MetaInfoNodeHandler(NodeHandler):
def register_strategy(self, compute_resharding_cost: bool = True) -> StrategiesVector:
"""
This method is inherited from NodeHandler. It will register the strategies first,
and rewrite the memory_cost and compute_cost of the strategy using the MetaInfo class.
and rewrite the memory_cost and compute_cost of the strategy using the ShardMetaInfo class.
"""
super().register_strategy(compute_resharding_cost=compute_resharding_cost)
target = self.get_target_function()
@ -266,15 +266,15 @@ class MetaInfoNodeHandler(NodeHandler):
# is not patched, we will use the default cost model to compute the cost.
# TODO: patch all torch functions and modules to make it clean
if meta_register.has(target.__class__) or meta_register.has(target):
metainfo_vector = []
strategies_info = []
for strategy in self.strategies_vector:
metainfo = MetaInfo(strategy, target)
metainfo = ShardMetaInfo(strategy, target)
strategy.compute_cost = metainfo.compute_cost
strategy.memory_cost = metainfo.memory_cost
metainfo_vector.append(metainfo)
strategies_info.append(metainfo)
# attach metainfos to the handler
setattr(self, "metainfo_vector", metainfo_vector)
setattr(self, "strategies_info", strategies_info)
else:
logger = get_dist_logger()
@ -313,7 +313,7 @@ class MetaInfoModuleHandler(ModuleHandler):
def register_strategy(self, compute_resharding_cost: bool = True) -> StrategiesVector:
"""
This method is inherited from NodeHandler. It will register the strategies first,
and rewrite the memory_cost and compute_cost of the strategy using the MetaInfo class.
and rewrite the memory_cost and compute_cost of the strategy using the ShardMetaInfo class.
"""
super().register_strategy(compute_resharding_cost=compute_resharding_cost)
target = self.get_target_function()
@ -321,15 +321,15 @@ class MetaInfoModuleHandler(ModuleHandler):
# is not patched, we will use the default cost model to compute the cost.
# TODO: patch all torch functions and modules to make it clean
if meta_register.has(target.__class__) or meta_register.has(target):
metainfo_vector = []
strategies_info = []
for strategy in self.strategies_vector:
metainfo = MetaInfo(strategy, target)
metainfo = ShardMetaInfo(strategy, target)
strategy.compute_cost = metainfo.compute_cost
strategy.memory_cost = metainfo.memory_cost
metainfo_vector.append(metainfo)
strategies_info.append(metainfo)
# attach metainfos to the handler
setattr(self, "metainfo_vector", metainfo_vector)
setattr(self, "strategies_info", strategies_info)
else:
logger = get_dist_logger()

@ -137,9 +137,9 @@ class StrategiesConstructor:
shard_option=self.solver_options.shard_option,
solver_perference=self.solver_options.solver_perference)
handler.register_strategy()
# attach metainfo_vector to node
if hasattr(handler, 'metainfo_vector'):
setattr(node, 'metainfo_vector', handler.metainfo_vector)
# attach strategies_info to node
if hasattr(handler, 'strategies_info'):
setattr(node, 'strategies_info', handler.strategies_info)
# call_function node
elif node.op == 'call_function':
@ -150,9 +150,9 @@ class StrategiesConstructor:
shard_option=self.solver_options.shard_option,
solver_perference=self.solver_options.solver_perference)
handler.register_strategy()
# attach metainfo_vector to node
if hasattr(handler, 'metainfo_vector'):
setattr(node, 'metainfo_vector', handler.metainfo_vector)
# attach strategies_info to node
if hasattr(handler, 'strategies_info'):
setattr(node, 'strategies_info', handler.strategies_info)
# call_method node
elif node.op == 'call_method':
@ -163,9 +163,9 @@ class StrategiesConstructor:
shard_option=self.solver_options.shard_option,
solver_perference=self.solver_options.solver_perference)
handler.register_strategy()
# attach metainfo_vector to node
if hasattr(handler, 'metainfo_vector'):
setattr(node, 'metainfo_vector', handler.metainfo_vector)
# attach strategies_info to node
if hasattr(handler, 'strategies_info'):
setattr(node, 'strategies_info', handler.strategies_info)
# output node
elif node.op == 'output':

@ -1,10 +1,12 @@
import pytest
import torch
import torch.nn.functional as F
from colossalai._analyzer.fx.graph_module import ColoGraphModule
from colossalai._analyzer.fx.passes import shape_prop_pass
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.passes.runtime_preparation_pass import size_value_converting_pass
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.tracer import ColoTracer
from colossalai.tensor.sharding_spec import ShardingSpec
@ -33,6 +35,7 @@ def recover_narrow(gm, narrow_node):
return gm
@pytest.mark.skip('ShapeProp is not compatible with PyTorch 1.11.0')
def test_size_value_converting_pass():
model = TestModule()
physical_mesh_id = torch.arange(0, 4)
@ -40,14 +43,14 @@ def test_size_value_converting_pass():
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
meta_args = {'x': torch.rand(4, 8).to('meta')}
input = torch.rand(4, 8)
tracer = ColoTracer()
tracer = ColoTracer(bias_addition_split=True)
graph = tracer.trace(root=model, meta_args=meta_args)
x_node = list(graph.nodes)[0]
x_sharding_spec = ShardingSpec(device_mesh, entire_shape=(4, 8), dim_partition_dict={0: [0]})
setattr(x_node, 'sharding_spec', x_sharding_spec)
gm = ColoGraphModule(model, graph)
gm = insert_narrow(gm, x_node)
shape_prop_pass(gm, *meta_args.values())
gm.recompile()
size = gm(input)
assert size == torch.Size([2, 8])

@ -4,7 +4,12 @@ import pytest
import torch
import torch.multiprocessing as mp
try:
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
NO_CODEGEN = False
except:
NO_CODEGEN = True
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
@ -77,6 +82,7 @@ def check_conv_module(rank, world_size, port):
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.skipif(NO_CODEGEN, reason='No codegen found')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_bias_addition_module():

@ -8,13 +8,15 @@ import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from transformers.pytorch_utils import Conv1D
try:
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
NO_CODEGEN = False
except:
NO_CODEGEN = True
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.tracer import ColoTracer
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.testing.pytest_wrapper import run_on_environment_flag
from colossalai.utils import free_port
@ -43,6 +45,7 @@ def check_act_ckpt(rank, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = GPT2MLPWithCkpt(intermediate_size=4 * HIDDEN_SIZE, hidden_size=HIDDEN_SIZE)
input = torch.rand(1, 64, HIDDEN_SIZE)
input_sample = {
'hidden_states': torch.rand(1, 64, HIDDEN_SIZE).to('meta'),
}
@ -54,10 +57,11 @@ def check_act_ckpt(rank, world_size, port):
gm = initialize_model(model, input_sample, device_mesh)
code = gm.module.graph.python_code('self').src
assert "runtime_comm_spec_apply_1 = colossalai_auto_parallel_passes_runtime_apply_pass_runtime_comm_spec_apply(linear_1, comm_actions_dict, 12, 'linear_1')" in code
assert "view_3 = colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, False, view_1, comm_actions_dict, use_reentrant=True)" in code
assert "view_3 = torch.utils.checkpoint.checkpoint(self.checkpoint_0, view_1, comm_actions_dict, use_reentrant=False)" in code
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.skipif(NO_CODEGEN, reason='No codegen found')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_mlp_layer():

@ -6,7 +6,12 @@ import torch
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
try:
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
NO_CODEGEN = False
except:
NO_CODEGEN = True
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
@ -93,6 +98,7 @@ def check_compatibility_with_ddp(rank, world_size, port):
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.skipif(NO_CODEGEN, reason='No codegen found')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_compatibility_with_ddp():

@ -6,7 +6,12 @@ import torch
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
try:
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
NO_CODEGEN = False
except:
NO_CODEGEN = True
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
@ -101,6 +106,7 @@ def check_auto_parallel_with_gemini(rank, world_size, port):
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.skipif(NO_CODEGEN, reason='No codegen found')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_auto_parallel_with_gemini():

@ -5,8 +5,11 @@ import torch.nn as nn
from torch.fx import GraphModule
from transformers.pytorch_utils import Conv1D
from colossalai._analyzer.fx.graph_module import ColoGraphModule
from colossalai._analyzer.fx.passes import shape_prop_pass
# from colossalai.fx.tracer.tracer import ColoTracer
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.tensor_shard.utils.factory import find_repeat_blocks
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.testing import parameterize
from colossalai.testing.pytest_wrapper import run_on_environment_flag
@ -83,11 +86,12 @@ def test_repeat_blocks(model_cls):
model = model_cls(4 * HIDDEN_DIM, HIDDEN_DIM, NUM_REPEAT_BLOCKS)
tracer = ColoTracer()
tracer = ColoTracer(bias_addition_split=True)
input_sample = {'x': torch.rand(BATCH_SIZE, SEQ_LENGTH, HIDDEN_DIM).to('meta')}
graph = tracer.trace(root=model, meta_args=input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
shape_prop_pass(gm, *input_sample.values())
gm.recompile()
node_list = list(graph.nodes)

@ -10,15 +10,23 @@ import torch.multiprocessing as mp
import transformers
from torch.fx import GraphModule
from colossalai._analyzer.fx.passes.shape_prop import shape_prop_pass
# from colossalai.fx.tracer.tracer import ColoTracer
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
try:
from colossalai.auto_parallel.tensor_shard.initialize import (
ModuleWrapper,
build_strategy_constructor,
solve_solution,
transform_to_sharded_model,
)
NO_CODEGEN = False
except:
NO_CODEGEN = True
from colossalai.auto_parallel.tensor_shard.sharding_strategy import ShardingSpec
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.tensor.shape_consistency import to_global
@ -52,9 +60,8 @@ def _check_module_grad(module: torch.nn.Module, origin_param_dict: Dict[str, tor
param_sharding_spec = best_sharding_spec_dict[new_name]
grad_to_compare = copy.deepcopy(param_grad)
param_grad_global = to_global(grad_to_compare, param_sharding_spec)
try:
assert_close_loose(param_grad_global, origin_param_grad, rtol=1e-03, atol=1e-03)
assert_close_loose(param_grad_global, origin_param_grad, rtol=1e-03, atol=1e-05)
except:
difference = param_grad_global - origin_param_grad
avg_diff = difference.abs().sum() / difference.numel()
@ -66,7 +73,7 @@ def check_attention_layer(rank, model_cls, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
config = transformers.GPT2Config(n_position=64, n_layer=1, n_head=16, n_embd=HIDDEN_DIM)
config = transformers.GPT2Config(n_position=64, n_layer=2, n_head=16, n_embd=HIDDEN_DIM)
if model_cls == GPT2MLP:
model = model_cls(intermediate_size=4 * config.hidden_size, config=config).to('cuda')
@ -111,15 +118,17 @@ def check_attention_layer(rank, model_cls, world_size, port):
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
tracer = ColoTracer()
tracer = ColoTracer(bias_addition_split=True)
graph = tracer.trace(root=model, meta_args=meta_input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
shape_prop_pass(gm, *meta_input_sample.values())
gm.recompile()
strategies_constructor = build_strategy_constructor(graph, device_mesh, 'standard', 'replicated', 'standard')
solution = solve_solution(gm, strategies_constructor, memory_budget=-1)
gm, sharding_spec_dicts = transform_to_sharded_model(gm, solution, device_mesh, strategies_constructor)
gm, sharding_spec_dicts = transform_to_sharded_model(gm, meta_input_sample, solution, device_mesh,
strategies_constructor)
gm = ModuleWrapper(gm, *sharding_spec_dicts)
nodes = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies]
@ -176,6 +185,7 @@ def check_attention_layer(rank, model_cls, world_size, port):
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.skipif(NO_CODEGEN, reason="no codegen module")
@pytest.mark.dist
@parameterize('model_cls', [GPT2MLP, GPT2Block, GPT2Attention, GPT2Model])
@rerun_if_address_is_in_use()

@ -3,11 +3,12 @@ import torch.nn as nn
import transformers
from torch.fx import GraphModule
from colossalai._analyzer.fx.passes.shape_prop import shape_prop_pass
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.tensor_shard.constants import BATCHNORM_MODULE_OP
from colossalai.auto_parallel.tensor_shard.options import SolverOptions
from colossalai.auto_parallel.tensor_shard.solver import CostGraph, GraphAnalyser, Solver, StrategiesConstructor
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.testing import parameterize
from colossalai.testing.pytest_wrapper import run_on_environment_flag
@ -21,7 +22,7 @@ HIDDEN_DIM = 384
@run_on_environment_flag(name='AUTO_PARALLEL')
@parameterize('model_cls', [GPT2Block, GPT2Attention, GPT2MLP, GPT2Model])
def test_self_attention_block(model_cls):
config = transformers.GPT2Config(n_position=64, n_layer=12, n_head=16, n_embd=HIDDEN_DIM)
config = transformers.GPT2Config(n_position=64, n_layer=2, n_head=16, n_embd=HIDDEN_DIM)
if model_cls == GPT2MLP:
model = model_cls(intermediate_size=4 * config.hidden_size, config=config)
else:
@ -33,7 +34,7 @@ def test_self_attention_block(model_cls):
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
shape_consistency_manager = ShapeConsistencyManager()
tracer = ColoTracer()
tracer = ColoTracer(bias_addition_split=True)
if model_cls == GPT2MLP:
input_sample = {
'hidden_states': torch.rand(BATCH_SIZE, SEQ_LENGTH, HIDDEN_DIM).to('meta'),
@ -52,6 +53,7 @@ def test_self_attention_block(model_cls):
graph = tracer.trace(root=model, meta_args=input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
shape_prop_pass(gm, *input_sample.values())
print(gm.graph)
gm.recompile()
solver_options = SolverOptions()

@ -1,8 +1,11 @@
import pytest
import torch
import torch.nn as nn
from colossalai._analyzer.fx.graph_module import ColoGraphModule
from colossalai._analyzer.fx.passes import shape_prop_pass
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.tensor_shard.solver import GraphAnalyser
from colossalai.fx import ColoGraphModule, ColoTracer
class LinearModel(nn.Module):
@ -22,15 +25,14 @@ class LinearModel(nn.Module):
return out
@pytest.mark.skip('meta tensor has some bugs in 1.11')
def test_liveness_analysis():
model = LinearModel()
tracer = ColoTracer()
graph = tracer.trace(model,
meta_args={
'x1': torch.rand(4, 4, device='meta'),
'x2': torch.rand(4, 4, device='meta')
})
tracer = ColoTracer(bias_addition_split=True)
meta_args = {'x1': torch.rand(4, 4, device='meta'), 'x2': torch.rand(4, 4, device='meta')}
graph = tracer.trace(model, meta_args=meta_args)
gm = ColoGraphModule(root=model, graph=graph, class_name=model.__class__.__name__)
shape_prop_pass(gm, *meta_args.values())
graph_analyser = GraphAnalyser(gm)
liveness_list = graph_analyser.liveness_analysis()

@ -24,7 +24,7 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import print_results
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo, meta_register
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations")

@ -17,7 +17,7 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo, meta_register
class MyModule(nn.Module):

@ -24,7 +24,7 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import print_results
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo, meta_register
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations")

@ -23,7 +23,7 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy, print_results
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo, meta_register
def _batchnorm_module_mem_test(rank, world_size, port):

@ -24,7 +24,7 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import print_results
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo, meta_register
class SplitModule(nn.Module):

@ -22,7 +22,7 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import print_results
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo, meta_register
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations")

@ -5,16 +5,19 @@ from typing import Dict, List
import torch
from torch.fx import GraphModule
from colossalai._analyzer.fx.graph_module import ColoGraphModule
from colossalai._analyzer.fx.passes import shape_prop_pass
# from colossalai.fx.tracer.tracer import ColoTracer
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass
from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass
from colossalai.auto_parallel.tensor_shard.options import SolverOptions
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationDataType, TrainCycleItem
from colossalai.auto_parallel.tensor_shard.solver import StrategiesConstructor
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.tracer.tracer import ColoTracer
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo
def mem_test_for_node_strategy(rank: int,
@ -30,14 +33,16 @@ def mem_test_for_node_strategy(rank: int,
model_to_shard, args_to_shard, kwargs_to_shard = copy.deepcopy(model), copy.deepcopy(input_args), copy.deepcopy(
input_kwargs)
tracer = ColoTracer()
tracer = ColoTracer(bias_addition_split=True)
input_sample = {}
for input_arg, meta_arg_name in zip(input_args, meta_arg_names):
input_sample[meta_arg_name] = torch.rand(input_arg.shape).to('meta')
for meta_kwarg_name, input_kwarg in input_kwargs.items():
input_sample[meta_kwarg_name] = torch.rand(input_kwarg.shape).to('meta')
graph = tracer.trace(root=model_to_shard, meta_args=input_sample)
gm = GraphModule(model_to_shard, graph, model_to_shard.__class__.__name__)
gm = ColoGraphModule(model_to_shard, graph, model_to_shard.__class__.__name__)
shape_prop_pass(gm, *input_sample.values())
gm.recompile()
solver_options = SolverOptions()
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
strategies_constructor.build_strategies_and_cost()
@ -108,10 +113,10 @@ def mem_test_for_node_strategy(rank: int,
# estimated memory
if target_node.op == "call_module":
metainfo = MetaInfo(target_node.strategies_vector[strategy_index],
metainfo = ShardMetaInfo(target_node.strategies_vector[strategy_index],
target_node.graph.owning_module.get_submodule(target_node.target))
else:
metainfo = MetaInfo(target_node.strategies_vector[strategy_index], target_node.target)
metainfo = ShardMetaInfo(target_node.strategies_vector[strategy_index], target_node.target)
print("estimated memory:")
print(

@ -1,126 +0,0 @@
import torch
from colossalai.auto_parallel.tensor_shard.options import SolverOptions
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationDataType
from colossalai.auto_parallel.tensor_shard.solver import CostGraph, GraphAnalyser, Solver, StrategiesConstructor
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.testing.pytest_wrapper import run_on_environment_flag
def _param_resharding_cost_assertion(node):
for strategy in node.strategies_vector:
for prev_node, resharding_cost in strategy.resharding_costs.items():
if strategy.get_op_data_by_name(str(prev_node)).type == OperationDataType.PARAM:
for cost in resharding_cost:
assert cost.fwd == 0
assert cost.bwd == 0
assert cost.total == 0
class LinearModel(torch.nn.Module):
def __init__(self, in_features, out_features):
super().__init__()
self.linear = torch.nn.Linear(in_features, out_features)
def forward(self, x):
x = self.linear(x)
x = x * 2
return x
class ConvModel(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True):
super().__init__()
self.conv = torch.nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
bias=bias)
def forward(self, x):
x = self.conv(x)
x = x * 2
return x
@run_on_environment_flag(name='AUTO_PARALLEL')
def test_linear_module():
model = LinearModel(4, 8)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
tracer = ColoTracer()
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %linear_weight : [#users=1] = get_attr[target=linear.weight]
# %linear_bias : [#users=1] = get_attr[target=linear.bias]
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%x, %linear_weight), kwargs = {})
# %add : [#users=1] = call_function[target=operator.add](args = (%linear, %linear_bias), kwargs = {})
# %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {})
# return mul
graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 4).to('meta')})
# def forward(self, x : torch.Tensor):
# linear_weight = self.linear.weight
# linear_bias = self.linear.bias
# linear = torch._C._nn.linear(x, linear_weight); x = linear_weight = None
# add = linear + linear_bias; linear = linear_bias = None
# mul = add * 2; add = None
# return mul
gm = ColoGraphModule(model, graph)
gm.recompile()
node_list = list(graph.nodes)
solver_options = SolverOptions()
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
strategies_constructor.build_strategies_and_cost()
linear_node = node_list[3]
_param_resharding_cost_assertion(linear_node)
@run_on_environment_flag(name='AUTO_PARALLEL')
def test_conv_module():
model = ConvModel(3, 6, 2)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
tracer = ColoTracer()
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %conv_weight : [#users=1] = get_attr[target=conv.weight]
# %conv_bias : [#users=1] = get_attr[target=conv.bias]
# %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%x, %conv_weight), kwargs = {})
# %view : [#users=1] = call_method[target=view](args = (%conv_bias, [1, -1, 1, 1]), kwargs = {})
# %add : [#users=1] = call_function[target=operator.add](args = (%conv2d, %view), kwargs = {})
# %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {})
# return mul
graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 3, 64, 64).to('meta')})
# def forward(self, x : torch.Tensor):
# conv_weight = self.conv.weight
# conv_bias = self.conv.bias
# conv2d = torch.conv2d(x, conv_weight); x = conv_weight = None
# view = conv_bias.view([1, -1, 1, 1]); conv_bias = None
# add = conv2d + view; conv2d = view = None
# mul = add * 2; add = None
# return mul
gm = ColoGraphModule(model, graph)
gm.recompile()
node_list = list(graph.nodes)
conv_node = node_list[3]
solver_options = SolverOptions()
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
strategies_constructor.build_strategies_and_cost()
_param_resharding_cost_assertion(conv_node)
if __name__ == '__main__':
test_linear_module()
test_conv_module()

@ -1,86 +0,0 @@
import copy
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.testing import assert_close, rerun_if_address_is_in_use
from colossalai.testing.pytest_wrapper import run_on_environment_flag
from colossalai.utils import free_port
class ConvModel(nn.Module):
def __init__(self, c_in, c_out):
super().__init__()
self.conv = nn.Conv2d(c_in, c_out, kernel_size=3, padding=1, bias=False)
def forward(self, x):
x = self.conv(x)
x = torch.flatten(x)
return x
def check_apply(rank, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
input = torch.rand(4, 4, 4, 4).cuda()
test_input = copy.deepcopy(input)
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {})
# return conv
model = ConvModel(4, 4).cuda()
test_model = copy.deepcopy(model)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
meta_args = {'x': torch.rand(4, 4, 4, 4).to('meta')}
gm = initialize_model(model, meta_args, device_mesh)
output = gm(input)
origin_output = test_model(test_input)
assert output.equal(origin_output)
origin_loss = origin_output.sum()
loss = output.sum()
origin_loss.backward()
loss.backward()
grad_0 = test_model.conv.weight.grad.narrow(0, 0, 1)
grad_1 = test_model.conv.weight.grad.narrow(0, 1, 1)
grad_2 = test_model.conv.weight.grad.narrow(0, 2, 1)
grad_3 = test_model.conv.weight.grad.narrow(0, 3, 1)
if rank == 0:
assert_close(gm.module.conv.weight.grad.data, grad_0.data)
elif rank == 1:
assert_close(gm.module.conv.weight.grad.data, grad_1.data)
elif rank == 2:
assert_close(gm.module.conv.weight.grad.data, grad_2.data)
elif rank == 3:
assert_close(gm.module.conv.weight.grad.data, grad_3.data)
else:
raise ValueError(f'rank {rank} does not exist.')
# skip this test due to pulp not installed in CI environment
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_apply():
world_size = 4
run_func = partial(check_apply, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_apply()

@ -2,11 +2,13 @@ import torch
from torch.fx import GraphModule
from torchvision.models import resnet50
from colossalai._analyzer.fx.passes import shape_prop_pass
# from colossalai.fx.tracer.tracer import ColoTracer
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.tensor_shard.constants import BATCHNORM_MODULE_OP
from colossalai.auto_parallel.tensor_shard.options import SolverOptions
from colossalai.auto_parallel.tensor_shard.solver import CostGraph, GraphAnalyser, Solver, StrategiesConstructor
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.testing.pytest_wrapper import run_on_environment_flag
@ -20,7 +22,7 @@ def test_cost_graph():
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
shape_consistency_manager = ShapeConsistencyManager()
tracer = ColoTracer()
tracer = ColoTracer(bias_addition_split=True)
model = resnet50(num_classes=100000)
input_sample = {'x': torch.rand(128, 3, 224, 224).to('meta')}
@ -50,6 +52,7 @@ def test_cost_graph():
# %fc : [#users=1] = call_module[target=fc](args = (%flatten,), kwargs = {})
# return fc
gm = GraphModule(model, graph, model.__class__.__name__)
shape_prop_pass(gm, *input_sample.values())
gm.recompile()
solver_options = SolverOptions()

Loading…
Cancel
Save