mirror of https://github.com/hpcaitech/ColossalAI
[examples] adding tflops to PaLM (#2365)
parent
93f62dd152
commit
fe0f7970a2
|
@ -1,9 +1,11 @@
|
|||
import gzip
|
||||
import random
|
||||
|
||||
from time import time
|
||||
from functools import partial
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import torch.nn as nn
|
||||
import tqdm
|
||||
from packaging import version
|
||||
from palm_pytorch import PaLM
|
||||
|
@ -21,7 +23,8 @@ from colossalai.utils.model.colo_init_context import ColoInitContext
|
|||
|
||||
# constants
|
||||
|
||||
NUM_BATCHES = int(1000)
|
||||
NUM_BATCHES = int(100)
|
||||
WARMUP_BATCHES = 1
|
||||
GRADIENT_ACCUMULATE_EVERY = 1
|
||||
LEARNING_RATE = 2e-4
|
||||
VALIDATE_EVERY = 100
|
||||
|
@ -76,10 +79,18 @@ def cycle(loader):
|
|||
def decode_token(token):
|
||||
return str(chr(max(32, token)))
|
||||
|
||||
def get_tflops(model_numel, batch_size, seq_len, step_time):
|
||||
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
|
||||
|
||||
def decode_tokens(tokens):
|
||||
return "".join(list(map(decode_token, tokens)))
|
||||
|
||||
def get_model_size(model: nn.Module):
|
||||
total_numel = 0
|
||||
for module in model.modules():
|
||||
for p in module.parameters(recurse=False):
|
||||
total_numel += p.numel()
|
||||
return total_numel
|
||||
|
||||
# Gemini + ZeRO DDP
|
||||
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
|
||||
|
@ -143,7 +154,6 @@ def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
|
|||
split_param_row_tp1d(param, pg) # row slice
|
||||
else:
|
||||
param.set_dist_spec(ReplicaSpec())
|
||||
|
||||
param.visited = True
|
||||
|
||||
|
||||
|
@ -152,6 +162,7 @@ if args.distplan not in ["colossalai", "pytorch"]:
|
|||
raise TypeError(f"{args.distplan} is error")
|
||||
disable_existing_loggers()
|
||||
colossalai.launch_from_torch(config={})
|
||||
logger = get_dist_logger()
|
||||
|
||||
with gzip.open("./data/enwik8.gz") as file:
|
||||
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
|
||||
|
@ -188,7 +199,7 @@ if args.distplan == "colossalai":
|
|||
ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg)
|
||||
|
||||
with ctx:
|
||||
model = PaLM(num_tokens=256, dim=512, depth=8)
|
||||
model = PaLM(num_tokens=50304, dim=4096, depth=64)
|
||||
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
|
||||
|
||||
pg = default_pg
|
||||
|
@ -205,25 +216,42 @@ else:
|
|||
model.cuda()
|
||||
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
||||
|
||||
|
||||
# model is shared after TP
|
||||
numel = get_model_size(model)
|
||||
get_tflops_func = partial(get_tflops, numel, args.batch_size, SEQ_LEN)
|
||||
|
||||
# training
|
||||
model.train()
|
||||
|
||||
tflops_list = []
|
||||
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
||||
|
||||
if args.distplan == "colossalai":
|
||||
optimizer.zero_grad()
|
||||
|
||||
start = time()
|
||||
loss = model(next(train_loader))
|
||||
fwd_end = time()
|
||||
fwd_time = fwd_end - start
|
||||
# loss.backward()
|
||||
optimizer.backward(loss)
|
||||
bwd_end = time()
|
||||
bwd_time = bwd_end - fwd_end
|
||||
|
||||
print(f"training loss: {loss.item()}")
|
||||
# print(f"training loss: {loss.item()}")
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
||||
# optim.step()
|
||||
# optim.zero_grad()
|
||||
optimizer.step()
|
||||
optim_time = time() - bwd_end
|
||||
step_time = time() - start
|
||||
|
||||
step_tflops = get_tflops_func(step_time)
|
||||
logger.info(
|
||||
f"[{i + 1}/{NUM_BATCHES}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}, FWD time: {fwd_time:.3f}s, BWD time: {bwd_time:.3f}s, OPTIM time: {optim_time:.3f}s",
|
||||
ranks=[0],
|
||||
)
|
||||
if i >= WARMUP_BATCHES:
|
||||
tflops_list.append(step_tflops)
|
||||
|
||||
else:
|
||||
for __ in range(GRADIENT_ACCUMULATE_EVERY):
|
||||
loss = model(next(train_loader))
|
||||
|
@ -234,6 +262,11 @@ for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
|||
optim.step()
|
||||
optim.zero_grad()
|
||||
|
||||
tflops_list.sort()
|
||||
median_index = ((NUM_BATCHES - WARMUP_BATCHES) >> 1) + WARMUP_BATCHES
|
||||
logger.info(f"Median TFLOPS is {tflops_list[median_index]:.3f}")
|
||||
|
||||
|
||||
# TODO
|
||||
# if i % VALIDATE_EVERY == 0:
|
||||
# model.eval()
|
||||
|
|
Loading…
Reference in New Issue