[autochunk] add autochunk feature

pull/2424/head
Jiarui Fang 2023-01-10 16:04:42 +08:00 committed by GitHub
commit 93f62dd152
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
27 changed files with 5917 additions and 0 deletions

View File

@ -0,0 +1,593 @@
from typing import Any, Dict, Iterable, List, Tuple
import torch
import colossalai
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE
if CODEGEN_AVAILABLE:
from torch.fx.graph import (
CodeGen,
PythonCode,
_custom_builtins,
_CustomBuiltin,
_format_target,
_is_from_torch,
_Namespace,
_origin_type_map,
inplace_methods,
magic_methods,
)
from torch.fx.node import Argument, Node, _get_qualified_name, _type_repr, map_arg
from .search_chunk import SearchChunk
from .utils import delete_free_var_from_last_use, find_idx_by_name, get_node_shape
def _gen_chunk_slice_dim(chunk_dim: int, chunk_indice_name: str, shape: List) -> str:
"""
Generate chunk slice string, eg. [:, :, chunk_idx_name:chunk_idx_name + chunk_size, :]
Args:
chunk_dim (int)
chunk_indice_name (str): chunk indice name
shape (List): node shape
Returns:
new_shape (str): return slice
"""
new_shape = "["
for idx, _ in enumerate(shape):
if idx == chunk_dim:
new_shape += "%s:%s + chunk_size" % (chunk_indice_name, chunk_indice_name)
else:
new_shape += ":"
new_shape += ", "
new_shape = new_shape[:-2] + "]"
return new_shape
def _gen_loop_start(
chunk_input: List[Node], chunk_output: Node, chunk_ouput_dim: int, chunk_size=2
) -> str:
"""
Generate chunk loop start
eg. chunk_result = torch.empty([100, 100], dtype=input_node.dtype, device=input_node.device)
chunk_size = 32
for chunk_idx in range(0, 100, 32):
......
Args:
chunk_input (List[Node]): chunk input node
chunk_output (Node): chunk output node
chunk_ouput_dim (int): chunk output node chunk dim
chunk_size (int): chunk size. Defaults to 2.
Returns:
context (str): generated str
"""
input_node = chunk_input[0]
out_shape = get_node_shape(chunk_output)
out_str = str(list(out_shape))
context = (
"chunk_result = torch.empty(%s, dtype=%s.dtype, device=%s.device); chunk_size = %d\nfor chunk_idx in range"
% (out_str, input_node.name, input_node.name, chunk_size)
)
context += "(0, %d, chunk_size):\n" % (out_shape[chunk_ouput_dim])
return context
def _gen_loop_end(
chunk_inputs: List[Node],
chunk_non_compute_inputs: List[Node],
chunk_outputs: Node,
chunk_outputs_dim: int,
node_list: List[Node],
) -> str:
"""
Generate chunk loop end
eg. chunk_result[chunk_idx:chunk_idx + chunk_size] = output_node
output_node = chunk_result; xx = None; xx = None
Args:
chunk_inputs (List[Node]): chunk input node
chunk_non_compute_inputs (List[Node]): input node without chunk
chunk_outputs (Node): chunk output node
chunk_outputs_dim (int): chunk output node chunk dim
node_list (List)
Returns:
context (str): generated str
"""
chunk_outputs_name = chunk_outputs.name
chunk_outputs_idx = find_idx_by_name(chunk_outputs_name, node_list)
chunk_output_shape = chunk_outputs.meta["tensor_meta"].shape
chunk_slice = _gen_chunk_slice_dim(
chunk_outputs_dim, "chunk_idx", chunk_output_shape
)
context = " chunk_result%s = %s; %s = None\n" % (
chunk_slice,
chunk_outputs_name,
chunk_outputs_name,
)
context += (
chunk_outputs_name + " = chunk_result; chunk_result = None; chunk_size = None"
)
# determine if its the last use for chunk input
for chunk_input in chunk_inputs + chunk_non_compute_inputs:
if all(
[
find_idx_by_name(user.name, node_list) <= chunk_outputs_idx
for user in chunk_input.users.keys()
]
):
context += "; %s = None" % chunk_input.name
context += "\n"
return context
def _replace_name(context: str, name_from: str, name_to: str) -> str:
"""
replace node name
"""
patterns = [(" ", " "), (" ", "."), (" ", ","), ("(", ")"), ("(", ","), (" ", ")")]
for p in patterns:
source = p[0] + name_from + p[1]
target = p[0] + name_to + p[1]
if source in context:
context = context.replace(source, target)
return context
def _replace_reshape_size(context: str, node_name: str, reshape_size_dict: Dict) -> str:
"""
replace reshape size, some may have changed due to chunk
"""
if node_name not in reshape_size_dict:
return context
for size_name, size_value in reshape_size_dict[node_name].items():
context = context.replace(size_name, size_value)
return context
def _replace_ones_like(
search_chunk: SearchChunk,
chunk_infos: List[Dict],
region_idx: int,
node_idx: int,
node: Node,
body: List[str],
) -> List[str]:
"""
add chunk slice for new tensor op such as ones like
"""
if "ones_like" in node.name:
meta_node = search_chunk.trace_indice.node_list[node_idx]
chunk_dim = chunk_infos[region_idx]["node_chunk_dim"][meta_node]["chunk_dim"]
if get_node_shape(meta_node)[chunk_dim] != 1:
source_node = meta_node.args[0].args[0]
if (
source_node not in chunk_infos[region_idx]["node_chunk_dim"]
or chunk_infos[region_idx]["node_chunk_dim"][source_node]["chunk_dim"]
is None
):
chunk_slice = _gen_chunk_slice_dim(
chunk_dim, "chunk_idx", get_node_shape(node)
)
body[-1] = _replace_name(
body[-1], node.args[0].name, node.args[0].name + chunk_slice
)
return body
def _replace_input_node(
chunk_inputs: List[Node],
region_idx: int,
chunk_inputs_dim: Dict,
node_idx: int,
body: List[str],
) -> List[str]:
"""
add chunk slice for input nodes
"""
for input_node_idx, input_node in enumerate(chunk_inputs[region_idx]):
for idx, dim in chunk_inputs_dim[region_idx][input_node_idx].items():
if idx == node_idx:
chunk_slice = _gen_chunk_slice_dim(
dim[0], "chunk_idx", get_node_shape(input_node)
)
body[-1] = _replace_name(
body[-1], input_node.name, input_node.name + chunk_slice
)
return body
def emit_code_with_chunk(
body: List[str],
nodes: Iterable[Node],
emit_node_func,
delete_unused_value_func,
search_chunk: SearchChunk,
chunk_infos: List,
):
"""
Emit code with chunk according to chunk_infos.
It will generate a for loop in chunk regions, and
replace inputs and outputs of regions with chunked variables.
Args:
body: forward code
nodes: graph.nodes
emit_node_func: function to emit node
delete_unused_value_func: function to remove the unused value
search_chunk: the class to search all chunks
chunk_infos: store all information about all chunks.
"""
node_list = list(nodes)
# chunk region
chunk_starts = [i["region"][0] for i in chunk_infos]
chunk_ends = [i["region"][1] for i in chunk_infos]
# chunk inputs
chunk_inputs = [i["inputs"] for i in chunk_infos] # input with chunk
chunk_inputs_non_chunk = [
i["inputs_non_chunk"] for i in chunk_infos
] # input without chunk
chunk_inputs_dim = [i["inputs_dim"] for i in chunk_infos] # input chunk dim
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
j.name for i in chunk_inputs_non_chunk for j in i
]
# chunk outputs
chunk_outputs = [i["outputs"][0] for i in chunk_infos]
chunk_outputs_dim = [i["outputs_dim"] for i in chunk_infos]
node_list = search_chunk.reorder_graph.reorder_node_list(node_list)
node_idx = 0
region_idx = 0
within_chunk_region = False
while node_idx < len(node_list):
node = node_list[node_idx]
# if is chunk start, generate for loop start
if node_idx in chunk_starts:
within_chunk_region = True
region_idx = chunk_starts.index(node_idx)
body.append(
_gen_loop_start(
chunk_inputs[region_idx],
chunk_outputs[region_idx],
chunk_outputs_dim[region_idx],
chunk_infos[region_idx]["chunk_size"],
)
)
if within_chunk_region:
emit_node_func(node, body)
# replace input var with chunk var
body = _replace_input_node(
chunk_inputs, region_idx, chunk_inputs_dim, node_idx, body
)
# ones like
body = _replace_ones_like(
search_chunk, chunk_infos, region_idx, node_idx, node, body
)
# reassgin reshape size
body[-1] = _replace_reshape_size(
body[-1], node.name, chunk_infos[region_idx]["reshape_size"]
)
body[-1] = " " + body[-1]
delete_unused_value_func(node, body, chunk_inputs_names)
else:
emit_node_func(node, body)
if node_idx not in chunk_inputs:
delete_unused_value_func(node, body, chunk_inputs_names)
# generate chunk region end
if node_idx in chunk_ends:
body.append(
_gen_loop_end(
chunk_inputs[region_idx],
chunk_inputs_non_chunk[region_idx],
chunk_outputs[region_idx],
chunk_outputs_dim[region_idx],
node_list,
)
)
within_chunk_region = False
node_idx += 1
if CODEGEN_AVAILABLE:
class AutoChunkCodeGen(CodeGen):
def __init__(self, meta_graph, max_memory=None, print_mem=False):
super().__init__()
self.meta_graph = meta_graph
self.max_memory = max_memory
self.meta_node = list(meta_graph.graph.nodes)
# find the chunk regions
self.search_chunk = SearchChunk(meta_graph, max_memory, print_mem)
self.chunk_infos = self.search_chunk.search_region()
def _gen_python_code(
self, nodes, root_module: str, namespace: _Namespace
) -> PythonCode:
free_vars: List[str] = []
body: List[str] = []
globals_: Dict[str, Any] = {}
wrapped_fns: Dict[str, None] = {}
# Wrap string in list to pass by reference
maybe_return_annotation: List[str] = [""]
def add_global(name_hint: str, obj: Any):
"""Add an obj to be tracked as a global.
We call this for names that reference objects external to the
Graph, like functions or types.
Returns: the global name that should be used to reference 'obj' in generated source.
"""
if (
_is_from_torch(obj) and obj != torch.device
): # to support registering torch.device
# HACK: workaround for how torch custom ops are registered. We
# can't import them like normal modules so they must retain their
# fully qualified name.
return _get_qualified_name(obj)
# normalize the name hint to get a proper identifier
global_name = namespace.create_name(name_hint, obj)
if global_name in globals_:
assert globals_[global_name] is obj
return global_name
globals_[global_name] = obj
return global_name
# set _custom_builtins here so that we needn't import colossalai in forward
_custom_builtins["colossalai"] = _CustomBuiltin(
"import colossalai", colossalai
)
# Pre-fill the globals table with registered builtins.
for name, (_, obj) in _custom_builtins.items():
add_global(name, obj)
def type_repr(o: Any):
if o == ():
# Empty tuple is used for empty tuple type annotation Tuple[()]
return "()"
typename = _type_repr(o)
if hasattr(o, "__origin__"):
# This is a generic type, e.g. typing.List[torch.Tensor]
origin_type = _origin_type_map.get(o.__origin__, o.__origin__)
origin_typename = add_global(_type_repr(origin_type), origin_type)
if hasattr(o, "__args__"):
# Assign global names for each of the inner type variables.
args = [type_repr(arg) for arg in o.__args__]
if len(args) == 0:
# Bare type, such as `typing.Tuple` with no subscript
# This code-path used in Python < 3.9
return origin_typename
return f'{origin_typename}[{",".join(args)}]'
else:
# Bare type, such as `typing.Tuple` with no subscript
# This code-path used in Python 3.9+
return origin_typename
# Common case: this is a regular module name like 'foo.bar.baz'
return add_global(typename, o)
def _format_args(
args: Tuple[Argument, ...], kwargs: Dict[str, Argument]
) -> str:
def _get_repr(arg):
# Handle NamedTuples (if it has `_fields`) via add_global.
if isinstance(arg, tuple) and hasattr(arg, "_fields"):
qualified_name = _get_qualified_name(type(arg))
global_name = add_global(qualified_name, type(arg))
return f"{global_name}{repr(tuple(arg))}"
return repr(arg)
args_s = ", ".join(_get_repr(a) for a in args)
kwargs_s = ", ".join(f"{k} = {_get_repr(v)}" for k, v in kwargs.items())
if args_s and kwargs_s:
return f"{args_s}, {kwargs_s}"
return args_s or kwargs_s
# Run through reverse nodes and record the first instance of a use
# of a given node. This represents the *last* use of the node in the
# execution order of the program, which we will use to free unused
# values
node_to_last_use: Dict[Node, Node] = {}
user_to_last_uses: Dict[Node, List[Node]] = {}
def register_last_uses(n: Node, user: Node):
if n not in node_to_last_use:
node_to_last_use[n] = user
user_to_last_uses.setdefault(user, []).append(n)
for node in reversed(nodes):
map_arg(node.args, lambda n: register_last_uses(n, node))
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
delete_free_var_from_last_use(user_to_last_uses)
# NOTE: we add a variable to distinguish body and ckpt_func
def delete_unused_values(user: Node, body, to_keep=[]):
"""
Delete values after their last use. This ensures that values that are
not used in the remainder of the code are freed and the memory usage
of the code is optimal.
"""
if user.op == "placeholder":
return
if user.op == "output":
body.append("\n")
return
nodes_to_delete = user_to_last_uses.get(user, [])
nodes_to_delete = [i for i in nodes_to_delete if i.name not in to_keep]
if len(nodes_to_delete):
to_delete_str = " = ".join(
[repr(n) for n in nodes_to_delete] + ["None"]
)
body.append(f"; {to_delete_str}\n")
else:
body.append("\n")
# NOTE: we add a variable to distinguish body and ckpt_func
def emit_node(node: Node, body):
maybe_type_annotation = (
"" if node.type is None else f" : {type_repr(node.type)}"
)
if node.op == "placeholder":
assert isinstance(node.target, str)
maybe_default_arg = (
"" if not node.args else f" = {repr(node.args[0])}"
)
free_vars.append(
f"{node.target}{maybe_type_annotation}{maybe_default_arg}"
)
raw_name = node.target.replace("*", "")
if raw_name != repr(node):
body.append(f"{repr(node)} = {raw_name}\n")
return
elif node.op == "call_method":
assert isinstance(node.target, str)
body.append(
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}"
f"({_format_args(node.args[1:], node.kwargs)})"
)
return
elif node.op == "call_function":
assert callable(node.target)
# pretty print operators
if (
node.target.__module__ == "_operator"
and node.target.__name__ in magic_methods
):
assert isinstance(node.args, tuple)
body.append(
f"{repr(node)}{maybe_type_annotation} = "
f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}"
)
return
# pretty print inplace operators; required for jit.script to work properly
# not currently supported in normal FX graphs, but generated by torchdynamo
if (
node.target.__module__ == "_operator"
and node.target.__name__ in inplace_methods
):
body.append(
f"{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; "
f"{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}"
)
return
qualified_name = _get_qualified_name(node.target)
global_name = add_global(qualified_name, node.target)
# special case for getattr: node.args could be 2-argument or 3-argument
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
if (
global_name == "getattr"
and isinstance(node.args, tuple)
and isinstance(node.args[1], str)
and node.args[1].isidentifier()
and len(node.args) == 2
):
body.append(
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}"
)
return
body.append(
f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})"
)
if node.meta.get("is_wrapped", False):
wrapped_fns.setdefault(global_name)
return
elif node.op == "call_module":
assert isinstance(node.target, str)
body.append(
f"{repr(node)}{maybe_type_annotation} = "
f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})"
)
return
elif node.op == "get_attr":
assert isinstance(node.target, str)
body.append(
f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}"
)
return
elif node.op == "output":
if node.type is not None:
maybe_return_annotation[0] = f" -> {type_repr(node.type)}"
body.append(self.generate_output(node.args[0]))
return
raise NotImplementedError(f"node: {node.op} {node.target}")
# Modified for activation checkpointing
ckpt_func = []
# if any node has a list of labels for activation_checkpoint, we
# will use nested type of activation checkpoint codegen
emit_code_with_chunk(
body,
nodes,
emit_node,
delete_unused_values,
self.search_chunk,
self.chunk_infos,
)
if len(body) == 0:
# If the Graph has no non-placeholder nodes, no lines for the body
# have been emitted. To continue to have valid Python code, emit a
# single pass statement
body.append("pass\n")
if len(wrapped_fns) > 0:
wrap_name = add_global("wrap", torch.fx.wrap)
wrap_stmts = "\n".join(
[f'{wrap_name}("{name}")' for name in wrapped_fns]
)
else:
wrap_stmts = ""
if self._body_transformer:
body = self._body_transformer(body)
for name, value in self.additional_globals():
add_global(name, value)
# as we need colossalai.utils.checkpoint, we need to import colossalai
# in forward function
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0])
prologue = "".join(ckpt_func) + prologue
prologue = prologue
code = "".join(body)
code = "\n".join(" " + line for line in code.split("\n"))
fn_code = f"""
{wrap_stmts}
{prologue}
{code}"""
# print(fn_code)
return PythonCode(fn_code, globals_)

View File

@ -0,0 +1,328 @@
import copy
from typing import Any, Callable, Dict, Iterable, List, Tuple
import torch
from torch.fx.node import Node, map_arg
from colossalai.fx.profiler import activation_size, parameter_size
from .utils import (
delete_free_var_from_last_use,
find_idx_by_name,
get_node_shape,
is_non_compute_node_except_placeholder,
)
class EstimateMemory(object):
"""
Estimate memory with chunk
"""
def __init__(self) -> None:
pass
def _get_meta_node_size(self, x):
x = x.meta["tensor_meta"]
x = x.numel * torch.tensor([], dtype=x.dtype).element_size()
return x
def _get_output_node(self, n):
out_size = activation_size(n.meta["fwd_out"])
out_node = [n.name] if out_size > 0 else []
return out_size, out_node
def _get_output_node_size(self, n):
return self._get_output_node(n)[0]
def _add_active_node(self, n, active_list):
new_active = self._get_output_node(n)[1]
if n.op == "placeholder":
new_active.append(n.name)
for i in new_active:
if i not in active_list:
active_list.append(i)
def _get_delete_node(self, user, user_to_last_uses, to_keep=None):
delete_size = 0
delete_node = []
if user.op not in ("output",):
nodes_to_delete = user_to_last_uses.get(user, [])
if to_keep is not None:
keep_list = []
for n in nodes_to_delete:
if n.name in to_keep:
keep_list.append(n)
for n in keep_list:
if n in nodes_to_delete:
nodes_to_delete.remove(n)
if len(nodes_to_delete):
out_node = [self._get_output_node(i) for i in nodes_to_delete]
delete_size = sum([i[0] for i in out_node])
for i in range(len(out_node)):
if out_node[i][0] > 0:
delete_node.append(out_node[i][1][0])
elif nodes_to_delete[i].op == "placeholder":
delete_node.append(nodes_to_delete[i].name)
# elif any(j in nodes_to_delete[i].name for j in ['transpose', 'permute', 'view']):
# delete_node.append(nodes_to_delete[i].name)
return delete_size, delete_node
def _get_delete_node_size(self, user, user_to_last_uses, to_keep):
return self._get_delete_node(user, user_to_last_uses, to_keep)[0]
def _remove_deactive_node(self, user, user_to_last_uses, active_list):
delete_node = self._get_delete_node(user, user_to_last_uses)[1]
for i in delete_node:
if i in active_list:
active_list.remove(i)
def _get_chunk_inputs_size(
self, chunk_inputs, chunk_inputs_non_chunk, node_list, chunk_end_idx
):
nodes_to_delete = []
for chunk_input in chunk_inputs + chunk_inputs_non_chunk:
chunk_input_users = chunk_input.users.keys()
chunk_input_users_idx = [
find_idx_by_name(i.name, node_list) for i in chunk_input_users
]
if all(i <= chunk_end_idx for i in chunk_input_users_idx):
if chunk_input not in nodes_to_delete:
nodes_to_delete.append(chunk_input)
out_node = [self._get_output_node(i) for i in nodes_to_delete]
delete_size = sum([i[0] for i in out_node])
return delete_size
def _get_last_usr(self, nodes):
node_to_last_use: Dict[Node, Node] = {}
user_to_last_uses: Dict[Node, List[Node]] = {}
def register_last_uses(n: Node, user: Node):
if n not in node_to_last_use:
node_to_last_use[n] = user
user_to_last_uses.setdefault(user, []).append(n)
for node in reversed(nodes):
map_arg(node.args, lambda n: register_last_uses(n, node))
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
return user_to_last_uses
def _get_contiguous_memory(self, node, not_contiguous_list, delete=False):
mem = 0
not_contiguous_ops = ["permute"]
inherit_contiguous_ops = ["transpose", "view"]
if node.op == "call_function" and any(
n in node.name for n in ["matmul", "reshape"]
):
for n in node.args:
if n in not_contiguous_list:
# matmul won't change origin tensor, but create a tmp copy
mem += self._get_output_node_size(n)
elif node.op == "call_module":
for n in node.args:
if n in not_contiguous_list:
# module will just make origin tensor to contiguous
if delete:
not_contiguous_list.remove(n)
elif node.op == "call_method" and any(
i in node.name for i in not_contiguous_ops
):
if node not in not_contiguous_list:
not_contiguous_list.append(node)
return mem
def _get_chunk_ratio(self, node, chunk_node_dim, chunk_size):
if node not in chunk_node_dim:
return 1.0
node_shape = get_node_shape(node)
chunk_dim = chunk_node_dim[node]["chunk_dim"]
if chunk_dim is None:
return 1.0
else:
return float(chunk_size) / node_shape[chunk_dim]
def _get_chunk_delete_node_size(
self, user, user_to_last_uses, chunk_ratio, chunk_inputs_names
):
# if any(j in user.name for j in ['transpose', 'permute', 'view']):
# return 0
if user.op in ("placeholder", "output"):
return 0
nodes_to_delete = user_to_last_uses.get(user, [])
delete_size = 0
for n in nodes_to_delete:
if n.name in chunk_inputs_names:
continue
delete_size += self._get_output_node_size(n) * chunk_ratio
return delete_size
def _print_mem_log(self, log, nodes, title=None):
if title:
print(title)
for idx, (l, n) in enumerate(zip(log, nodes)):
print("%s:%.2f \t" % (n.name, l), end="")
if (idx + 1) % 3 == 0:
print("")
print("\n")
def _print_compute_op_mem_log(self, log, nodes, title=None):
if title:
print(title)
for idx, (l, n) in enumerate(zip(log, nodes)):
if n.op in ["placeholder", "get_attr", "output"]:
continue
if any(i in n.name for i in ["getitem", "getattr"]):
continue
print("%s:%.2f \t" % (n.name, l), end="")
if (idx + 1) % 3 == 0:
print("")
print("\n")
def estimate_chunk_inference_mem(
self,
node_list: List,
chunk_infos=None,
print_mem=False,
):
"""
Estimate inference memory with chunk
Args:
node_list (List): _description_
chunk_infos (Dict): Chunk information. Defaults to None.
print_mem (bool): Wether to print peak memory of every node. Defaults to False.
Returns:
act_memory_peak_log (List): peak memory of every node
act_memory_after_node_log (List): memory after excuting every node
active_node_list_log (List): active nodes of every node. active nodes refer to
nodes generated but not deleted.
"""
act_memory = 0.0
act_memory_peak_log = []
act_memory_after_node_log = []
active_node_list = []
active_node_list_log = []
not_contiguous_list = []
user_to_last_uses = self._get_last_usr(node_list)
user_to_last_uses_no_free_var = self._get_last_usr(node_list)
delete_free_var_from_last_use(user_to_last_uses_no_free_var)
use_chunk = True if chunk_infos is not None else False
chunk_within = False
chunk_region_idx = None
chunk_ratio = 1 # use it to estimate chunk mem
chunk_inputs_names = []
if use_chunk:
chunk_regions = [i["region"] for i in chunk_infos]
chunk_starts = [i[0] for i in chunk_regions]
chunk_ends = [i[1] for i in chunk_regions]
chunk_inputs = [i["inputs"] for i in chunk_infos]
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos]
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
j.name for i in chunk_inputs_non_chunk for j in i
]
chunk_outputs = [i["outputs"][0] for i in chunk_infos]
chunk_node_dim = [i["node_chunk_dim"] for i in chunk_infos]
chunk_sizes = [
i["chunk_size"] if "chunk_size" in i else 1 for i in chunk_infos
]
for idx, node in enumerate(node_list):
# if node in chunk start nodes, change chunk ratio and add chunk_tensor
if use_chunk and idx in chunk_starts:
chunk_within = True
chunk_region_idx = chunk_starts.index(idx)
act_memory += self._get_output_node_size(
chunk_outputs[chunk_region_idx]
) / (1024**2)
# determine chunk ratio for current node
if chunk_within:
chunk_ratio = self._get_chunk_ratio(
node,
chunk_node_dim[chunk_region_idx],
chunk_sizes[chunk_region_idx],
)
# if node is placeholder, just add the size of the node
if node.op == "placeholder":
act_memory += self._get_meta_node_size(node) * chunk_ratio / (1024**2)
act_memory_peak_log.append(act_memory)
# skip output
elif node.op == "output":
continue
# no change for non compute node
elif is_non_compute_node_except_placeholder(node):
act_memory_peak_log.append(act_memory)
# node is a compute op
# calculate tmp, output node and delete node memory
else:
# forward memory
# TODO: contiguous_memory still not accurate for matmul, view, reshape and transpose
act_memory += (
self._get_contiguous_memory(node, not_contiguous_list)
* chunk_ratio
/ (1024**2)
)
act_memory += (
self._get_output_node_size(node) * chunk_ratio / (1024**2)
)
# record max act memory
act_memory_peak_log.append(act_memory)
# delete useless memory
act_memory -= (
self._get_contiguous_memory(node, not_contiguous_list, delete=True)
* chunk_ratio
/ (1024**2)
)
# delete unused vars not in chunk_input_list
# we can't delete input nodes until chunk ends
if chunk_within:
act_memory -= self._get_chunk_delete_node_size(
node,
user_to_last_uses_no_free_var,
chunk_ratio,
chunk_inputs_names,
) / (1024**2)
else:
act_memory -= self._get_delete_node_size(
node, user_to_last_uses_no_free_var, chunk_inputs_names
) / (1024**2)
# log active node, only effective without chunk
self._add_active_node(node, active_node_list)
self._remove_deactive_node(node, user_to_last_uses, active_node_list)
# if node in chunk end nodes, restore chunk settings
if use_chunk and idx in chunk_ends:
act_memory -= (
self._get_output_node_size(node) * chunk_ratio / (1024**2)
)
act_memory -= self._get_chunk_inputs_size(
chunk_inputs[chunk_region_idx],
chunk_inputs_non_chunk[chunk_region_idx],
node_list,
chunk_regions[chunk_region_idx][1],
) / (1024**2)
chunk_within = False
chunk_ratio = 1
chunk_region_idx = None
act_memory_after_node_log.append(act_memory)
active_node_list_log.append(copy.deepcopy(active_node_list))
if print_mem:
print("with chunk" if use_chunk else "without chunk")
# self._print_mem_log(act_memory_peak_log, node_list, "peak")
# self._print_mem_log(act_memory_after_node_log, node_list, "after")
self._print_compute_op_mem_log(act_memory_peak_log, node_list, "peak")
# self._print_compute_op_mem_log(
# act_memory_after_node_log, node_list, "after"
# )
# param_memory = parameter_size(gm)
# all_memory = act_memory + param_memory
return act_memory_peak_log, act_memory_after_node_log, active_node_list_log

View File

@ -0,0 +1,117 @@
from .trace_indice import TraceIndice
from .utils import find_idx_by_name
class ReorderGraph(object):
"""
Reorder node list and indice trace list
"""
def __init__(self, trace_indice: TraceIndice) -> None:
self.trace_indice = trace_indice
self.all_reorder_map = {
i: i for i in range(len(self.trace_indice.indice_trace_list))
}
def _get_reorder_map(self, chunk_info):
reorder_map = {i: i for i in range(len(self.trace_indice.node_list))}
chunk_region_start = chunk_info["region"][0]
chunk_region_end = chunk_info["region"][1]
chunk_prepose_nodes = chunk_info["args"]["prepose_nodes"]
chunk_prepose_nodes_idx = [
find_idx_by_name(i.name, self.trace_indice.node_list)
for i in chunk_prepose_nodes
]
# put prepose nodes ahead
for idx, n in enumerate(chunk_prepose_nodes):
n_idx = chunk_prepose_nodes_idx[idx]
reorder_map[n_idx] = chunk_region_start + idx
# put other nodes after prepose nodes
for n in self.trace_indice.node_list[chunk_region_start : chunk_region_end + 1]:
if n in chunk_prepose_nodes:
continue
n_idx = find_idx_by_name(n.name, self.trace_indice.node_list)
pos = sum([n_idx < i for i in chunk_prepose_nodes_idx])
reorder_map[n_idx] = n_idx + pos
return reorder_map
def _reorder_chunk_info(self, chunk_info, reorder_map):
# update chunk info
chunk_info["region"] = (
chunk_info["region"][0] + len(chunk_info["args"]["prepose_nodes"]),
chunk_info["region"][1],
)
new_inputs_dim = []
for idx, input_dim in enumerate(chunk_info["inputs_dim"]):
new_input_dim = {}
for k, v in input_dim.items():
new_input_dim[reorder_map[k]] = v
new_inputs_dim.append(new_input_dim)
chunk_info["inputs_dim"] = new_inputs_dim
return chunk_info
def _update_all_reorder_map(self, reorder_map):
for origin_idx, map_idx in self.all_reorder_map.items():
self.all_reorder_map[origin_idx] = reorder_map[map_idx]
def _reorder_self_node_list(self, reorder_map):
new_node_list = [None for _ in range(len(self.trace_indice.node_list))]
for old_idx, new_idx in reorder_map.items():
new_node_list[new_idx] = self.trace_indice.node_list[old_idx]
self.trace_indice.node_list = new_node_list
def _reorder_idx_trace(self, reorder_map):
# reorder list
new_idx_trace_list = [
None for _ in range(len(self.trace_indice.indice_trace_list))
]
for old_idx, new_idx in reorder_map.items():
new_idx_trace_list[new_idx] = self.trace_indice.indice_trace_list[old_idx]
self.trace_indice.indice_trace_list = new_idx_trace_list
# update compute
for idx_trace in self.trace_indice.indice_trace_list:
compute = idx_trace["compute"]
for dim_compute in compute:
for idx, i in enumerate(dim_compute):
dim_compute[idx] = reorder_map[i]
# update source
for idx_trace in self.trace_indice.indice_trace_list:
source = idx_trace["source"]
for dim_idx, dim_source in enumerate(source):
new_dim_source = {}
for k, v in dim_source.items():
new_dim_source[reorder_map[k]] = v
source[dim_idx] = new_dim_source
def reorder_all(self, chunk_info):
if chunk_info is None:
return chunk_info
if len(chunk_info["args"]["prepose_nodes"]) == 0:
return chunk_info
reorder_map = self._get_reorder_map(chunk_info)
self._update_all_reorder_map(reorder_map)
self._reorder_idx_trace(reorder_map)
self._reorder_self_node_list(reorder_map)
chunk_info = self._reorder_chunk_info(chunk_info, reorder_map)
return chunk_info
def reorder_node_list(self, node_list):
new_node_list = [None for _ in range(len(node_list))]
for old_idx, new_idx in self.all_reorder_map.items():
new_node_list[new_idx] = node_list[old_idx]
return new_node_list
def tmp_reorder(self, node_list, chunk_info):
if len(chunk_info["args"]["prepose_nodes"]) == 0:
return node_list, chunk_info
reorder_map = self._get_reorder_map(chunk_info)
# new tmp node list
new_node_list = [None for _ in range(len(node_list))]
for old_idx, new_idx in reorder_map.items():
new_node_list[new_idx] = node_list[old_idx]
chunk_info = self._reorder_chunk_info(chunk_info, reorder_map)
return new_node_list, chunk_info

View File

@ -0,0 +1,319 @@
import copy
from typing import Dict, List, Tuple
from torch.fx.node import Node
from .estimate_memory import EstimateMemory
from .reorder_graph import ReorderGraph
from .select_chunk import SelectChunk
from .trace_flow import TraceFlow
from .trace_indice import TraceIndice
from .utils import (
get_node_shape,
is_non_compute_node,
is_non_compute_node_except_placeholder,
)
class SearchChunk(object):
"""
This is the core class for AutoChunk.
It defines the framework of the strategy of AutoChunk.
Chunks will be selected one by one utill search stops.
The chunk search is as follows:
1. find the peak memory node
2. find the max chunk region according to the peak memory node
3. find all possible chunk regions in the max chunk region
4. find the best chunk region for current status
5. goto 1
Attributes:
gm: graph model
print_mem (bool): print estimated memory
trace_index: trace the flow of every dim of every node to find all free dims
trace_flow: determine the region chunk strategy
reorder_graph: reorder nodes to improve chunk efficiency
estimate_memory: estimate memory with chunk
select_chunk: select the best chunk region
Args:
gm: graph model
max_memory (int): max memory in MB
print_mem (bool): print estimated memory
"""
def __init__(self, gm, max_memory=None, print_mem=False) -> None:
self.gm = gm
self.print_mem = print_mem
self.trace_indice = TraceIndice(list(gm.graph.nodes))
self.trace_indice.trace_indice()
self.trace_flow = TraceFlow(self.trace_indice)
self.reorder_graph = ReorderGraph(self.trace_indice)
self.estimate_memory = EstimateMemory()
self.select_chunk = SelectChunk(
self.trace_indice,
self.estimate_memory,
self.reorder_graph,
max_memory=max_memory,
)
def _find_peak_node(self, mem_peak):
max_value = max(mem_peak)
max_idx = mem_peak.index(max_value)
return max_idx
def _get_free_var_idx(self) -> List:
"""
Get free var index
Returns:
free_var_idx (List): all indexs of free vars
"""
free_var_idx = []
for idx, n in enumerate(self.trace_indice.node_list):
if n.op == "placeholder":
free_var_idx.append(idx)
return free_var_idx
def _search_max_chunk_region(
self, active_node: List, peak_node: Node, chunk_regions: List
) -> Tuple:
"""
Search max chunk region according to peak memory node
Chunk region starts extending from the peak node, stops where free var num is min
Args:
active_node (List): active node status for every node
peak_node (Node): peak memory node
chunk_regions (List): chunk region infos
Returns:
chunk_region_start (int)
chunk_region_end (int)
"""
free_vars = self._get_free_var_idx()
free_var_num = len(free_vars)
active_node_num = [len(i) for i in active_node]
min_active_node_num = min(active_node_num[free_var_num:])
threshold = max(free_var_num, min_active_node_num)
# from peak_node to free_var
inside_flag = False
chunk_region_start = free_var_num
for i in range(peak_node, -1, -1):
if active_node_num[i] <= threshold:
inside_flag = True
if inside_flag and active_node_num[i] > threshold:
chunk_region_start = i + 1
break
# from peak_node to len-2
inside_flag = False
chunk_region_end = len(active_node) - 1
for i in range(peak_node, len(active_node)):
if active_node_num[i] <= threshold:
inside_flag = True
if inside_flag and active_node_num[i] > threshold:
chunk_region_end = i
break
for i in chunk_regions:
region = i["region"]
if chunk_region_start >= region[0] and chunk_region_end <= region[1]:
return None
elif (
region[0] <= chunk_region_start <= region[1]
and chunk_region_end > region[1]
):
chunk_region_start = region[1] + 1
elif (
region[0] <= chunk_region_end <= region[1]
and chunk_region_start < region[0]
):
chunk_region_end = region[0] - 1
return chunk_region_start, chunk_region_end
def _find_chunk_info(self, input_trace, output_trace, start_idx, end_idx) -> List:
"""
Find chunk info for a region.
We are given the region start and region end, and need to find out all chunk info for it.
We first loop every dim of start node and end node, to see if we can find dim pair,
which is linked in a flow and not computed.
If found, we then search flow in the whole region to find out all chunk infos.
Args:
input_trace (List): node's input trace in region
output_trace (List): node's output trace in region
start_idx (int): region start node index
end_idx (int): region end node index
Returns:
chunk_infos: possible regions found
"""
start_traces = input_trace[start_idx]
end_trace = output_trace[end_idx]
end_node = self.trace_indice.node_list[end_idx]
chunk_infos = []
for end_dim, _ in enumerate(end_trace["indice"]):
if len(start_traces) > 1:
continue
for start_node, start_trace in start_traces.items():
for start_dim, _ in enumerate(start_trace["indice"]):
# dim size cannot be 1
if (
get_node_shape(end_node)[end_dim] == 1
or get_node_shape(start_node)[start_dim] == 1
):
continue
# check index source align
if not self.trace_flow.check_index_source(
start_dim, start_node, start_idx, end_dim, end_node
):
continue
# check index copmute
if not self.trace_flow.check_index_compute(
start_idx, end_dim, end_node, end_idx
):
continue
# flow search
chunk_info = self.trace_flow.flow_search(
start_idx, start_dim, end_idx, end_dim
)
if chunk_info is None:
continue
# check index copmute
if not self.trace_flow.check_index_duplicate(chunk_info):
continue
chunk_infos.append(chunk_info)
return chunk_infos
def _search_possible_chunk_regions(
self, max_chunk_region: Tuple, peak_node: Node
) -> List:
"""
Search every possible region within the max chunk region.
Args:
max_chunk_region (Tuple)
peak_node (Node): peak memory node
Returns:
possible_chunk_region (List)
"""
possible_chunk_region = []
output_trace = copy.deepcopy(self.trace_indice.indice_trace_list)
input_trace = [] # trace of a node's input nodes
for _, n in enumerate(self.trace_indice.node_list):
cur_trace = {}
for arg in n.args:
if type(arg) == type(n) and not is_non_compute_node_except_placeholder(
arg
):
cur_trace[arg] = self.trace_indice._find_trace_from_node(arg)
input_trace.append(cur_trace)
for start_idx in range(max_chunk_region[0], peak_node + 1):
for end_idx in range(peak_node, max_chunk_region[1] + 1):
# skip non compute nodes
if is_non_compute_node(
self.trace_indice.node_list[start_idx]
) or is_non_compute_node(self.trace_indice.node_list[end_idx]):
continue
# select free dim
chunk_info = self._find_chunk_info(
input_trace, output_trace, start_idx, end_idx
)
if len(chunk_info) > 0:
possible_chunk_region.extend(chunk_info)
return possible_chunk_region
def _step_search(
self,
mem_peak: List[float],
active_node: List[List[Node]],
chunk_infos: List[Dict],
) -> Dict:
"""
Find one chunk region
The chunk search is as follows:
1. find the peak memory node
2. find the max chunk region according to the peak memory node
3. find all possible chunk regions in the max chunk region
4. find the best chunk region for current status
Args:
mem_peak (List): peak memory for every node
active_node (List[List[Node]]): active node for every node
chunk_infos (List[Dict]): all chunk info
Returns:
best_chunk_region (Dict)
"""
peak_node = self._find_peak_node(mem_peak)
max_chunk_region = self._search_max_chunk_region(
active_node, peak_node, chunk_infos
)
if max_chunk_region == None:
return None
possible_chunk_regions = self._search_possible_chunk_regions(
max_chunk_region, peak_node
)
best_chunk_region = self.select_chunk._select_best_chunk_region(
possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
)
best_chunk_region = self.reorder_graph.reorder_all(best_chunk_region)
return best_chunk_region
def _stop_search(self, init_mem_peak, mem_peak):
sorted_init_mem_peak = sorted(init_mem_peak)
if max(mem_peak) < sorted_init_mem_peak[int(len(sorted_init_mem_peak) * 0.5)]:
return True
return False
def search_region(self) -> Dict:
"""
Search all chunk regions:
1. Estimate current memory
2. Find best chunk for current memory
3. goto 1
Returns:
chunk_infos (Dict)
"""
chunk_infos = []
(
init_mem_peak,
_,
active_node,
) = self.estimate_memory.estimate_chunk_inference_mem(
self.trace_indice.node_list
)
mem_peak = init_mem_peak
while True:
chunk_info = self._step_search(mem_peak, active_node, chunk_infos)
if chunk_info is None:
break
chunk_infos.append(chunk_info)
(
mem_peak,
_,
active_node,
) = self.estimate_memory.estimate_chunk_inference_mem(
self.trace_indice.node_list, chunk_infos
)
if self._stop_search(init_mem_peak, mem_peak):
break
if self.print_mem:
self.print_mem = False
self.estimate_memory.estimate_chunk_inference_mem(
self.trace_indice.node_list, chunk_infos, print_mem=True
)
return chunk_infos

View File

@ -0,0 +1,224 @@
from .estimate_memory import EstimateMemory
from .reorder_graph import ReorderGraph
from .trace_indice import TraceIndice
from .utils import is_non_compute_node
class SelectChunk(object):
def __init__(
self,
trace_indice: TraceIndice,
estimate_memory: EstimateMemory,
reorder_graph: ReorderGraph,
max_memory=None,
):
self.trace_indice = trace_indice
self.estimate_memory = estimate_memory
self.reorder_graph = reorder_graph
if max_memory is not None:
self.stratge = "fit_memory"
self.max_memory = max_memory # MB
else:
self.stratge = "min_memory"
def _select_best_chunk_region(
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
):
if self.stratge == "min_memory":
best_region = self._select_min_memory_chunk_region(
possible_chunk_regions,
chunk_infos,
peak_node,
max_chunk_region,
mem_peak,
)
elif self.stratge == "fit_memory":
best_region = self._select_fit_memory_chunk_region(
possible_chunk_regions,
chunk_infos,
peak_node,
max_chunk_region,
mem_peak,
)
else:
raise RuntimeError()
return best_region
def _select_fit_memory_chunk_region(
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
):
# stop chunk if max memory satisfy memory limit
if max(mem_peak) < self.max_memory:
return None
# remove illegal regions
illegal_regions = []
for i in possible_chunk_regions:
if not self._is_legal_region(i, chunk_infos):
illegal_regions.append(i)
for i in illegal_regions:
if i in possible_chunk_regions:
possible_chunk_regions.remove(i)
if len(possible_chunk_regions) == 0:
return None
# get mem for chunk region
regions_dict = []
for region in possible_chunk_regions:
cur_region = region.copy()
cur_node_list, cur_region = self.reorder_graph.tmp_reorder(
self.trace_indice.node_list, cur_region
)
cur_chunk_infos = chunk_infos + [cur_region]
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(
cur_node_list, cur_chunk_infos
)[0]
cur_chunk_region_peak = cur_mem_peak[
max_chunk_region[0] : max_chunk_region[1] + 1
]
cur_chunk_region_max_peak = max(cur_chunk_region_peak)
if cur_chunk_region_max_peak < self.max_memory:
regions_dict.append(
{
"chunk_info": region,
"chunk_max_mem": cur_chunk_region_max_peak,
"chunk_len": self._get_compute_node_num(
region["region"][0], region["region"][1]
),
"reorder_chunk_info": cur_region,
"reorder_node_list": cur_node_list,
}
)
# no region found
if len(regions_dict) == 0:
raise RuntimeError("Search failed. Try a larger memory threshold.")
# select the min chunk len
chunk_len = [i["chunk_len"] for i in regions_dict]
best_region_idx = chunk_len.index(min(chunk_len))
best_region = regions_dict[best_region_idx]
# get max chunk size
best_region = self._get_fit_chunk_size(best_region, chunk_infos)
return best_region
def _get_fit_chunk_size(self, chunk_region_dict, chunk_infos):
chunk_size = 1
reorder_chunk_info = chunk_region_dict["reorder_chunk_info"]
reorder_chunk_info["chunk_size"] = chunk_size
cur_chunk_max_mem = 0
# search a region
while cur_chunk_max_mem < self.max_memory:
chunk_size *= 2
reorder_chunk_info["chunk_size"] = chunk_size
cur_chunk_infos = chunk_infos + [reorder_chunk_info]
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(
chunk_region_dict["reorder_node_list"], cur_chunk_infos
)[0]
cur_chunk_max_mem = max(
cur_mem_peak[
reorder_chunk_info["region"][0] : reorder_chunk_info["region"][1]
+ 1
]
)
# search exact size
chunk_info = chunk_region_dict["chunk_info"]
chunk_info["chunk_size"] = self._chunk_size_binary_search(
chunk_size // 2, chunk_size, chunk_region_dict, chunk_infos
)
return chunk_info
def _chunk_size_binary_search(self, left, right, chunk_region_dict, chunk_infos):
if left >= 16:
gap = 4
else:
gap = 1
chunk_info = chunk_region_dict["reorder_chunk_info"]
while right >= left + gap:
mid = int((left + right) / 2 + 0.5)
chunk_info["chunk_size"] = mid
cur_chunk_infos = chunk_infos + [chunk_info]
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(
chunk_region_dict["reorder_node_list"], cur_chunk_infos
)[0]
cur_chunk_max_mem = max(
cur_mem_peak[chunk_info["region"][0] : chunk_info["region"][1] + 1]
)
if cur_chunk_max_mem >= self.max_memory:
right = mid - gap
else:
left = mid + gap
return left
def _get_compute_node_num(self, start, end):
count = 0
for i in self.trace_indice.node_list[start : end + 1]:
if not is_non_compute_node(i):
count += 1
return count
def _select_min_memory_chunk_region(
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
):
# remove illegal regions
illegal_regions = []
for i in possible_chunk_regions:
if not self._is_legal_region(i, chunk_infos):
illegal_regions.append(i)
for i in illegal_regions:
if i in possible_chunk_regions:
possible_chunk_regions.remove(i)
if len(possible_chunk_regions) == 0:
return None
# get mem for chunk region
regions_dict = []
for region in possible_chunk_regions:
cur_region = region.copy()
cur_node_list, cur_region = self.reorder_graph.tmp_reorder(
self.trace_indice.node_list, cur_region
)
cur_chunk_infos = chunk_infos + [cur_region]
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(
cur_node_list, cur_chunk_infos
)[0]
cur_chunk_region_peak = cur_mem_peak[
max_chunk_region[0] : max_chunk_region[1] + 1
]
cur_chunk_region_max_peak = max(cur_chunk_region_peak)
regions_dict.append(
{
"chunk_info": region,
"chunk_max_mem": cur_chunk_region_max_peak,
"chunk_len": self._get_compute_node_num(
region["region"][0], region["region"][1]
),
"reorder_chunk_info": cur_region,
"reorder_node_list": cur_node_list,
}
)
# select the min mem
chunk_max_mem = [i["chunk_max_mem"] for i in regions_dict]
best_region_idx = chunk_max_mem.index(min(chunk_max_mem))
best_region = regions_dict[best_region_idx]["chunk_info"]
if best_region is not None:
best_region["chunk_size"] = 1
return best_region
def _is_legal_region(self, cur_chunk_info, chunk_infos):
(chunk_region_start, chunk_region_end) = cur_chunk_info["region"]
if cur_chunk_info in chunk_infos:
return False
if chunk_region_end < chunk_region_start:
return False
for i in chunk_infos:
region = i["region"]
if not (
(chunk_region_start > region[1] and chunk_region_end > region[1])
or (chunk_region_start < region[0] and chunk_region_end < region[0])
):
return False
return True

View File

@ -0,0 +1,420 @@
from .trace_indice import TraceIndice
from .utils import (
find_chunk_all_input_nodes,
find_chunk_compute_input_and_output_nodes,
find_idx_by_name,
get_node_shape,
is_non_compute_node,
is_non_compute_node_except_placeholder,
)
class TraceFlow(object):
def __init__(self, trace_indice: TraceIndice) -> None:
self.trace_indice = trace_indice
def check_index_source(self, start_dim, start_node, start_idx, end_dim, end_node):
"""
Check 2 given index: one index should be source of the other
Args:
start_idx(int): start node chunk dim
start_node(node): start node
end_idx(int): end node chunk dim
end_node(node): end node
Returns:
bool: True if check pass
"""
start_node_idx = find_idx_by_name(start_node.name, self.trace_indice.node_list)
end_node_trace = self.trace_indice._find_trace_from_node(end_node)
end_node_trace_source = end_node_trace["source"][end_dim]
sorted_source = sorted(
end_node_trace_source.items(), key=lambda d: d[0], reverse=True
)
for node_idx, node_dim in sorted_source:
if node_idx == start_node_idx and start_dim in node_dim:
return True
# it means we meet a node outside the loop, and the node is not input node
if node_idx < start_idx:
return False
return False
def check_index_compute(self, start_idx, end_dim, end_node, end_idx):
"""
Check 2 given index: check they haven't been computed in the source trace.
Args:
start_idx(int): start node chunk dim
start_node(node): start node
end_idx(int): end node chunk dim
end_node(node): end node
Returns:
bool: True if check pass
"""
end_node_trace = self.trace_indice._find_trace_from_node(end_node)
end_node_compute = end_node_trace["compute"][end_dim]
if any(start_idx <= i <= end_idx for i in end_node_compute):
return False
return True
def get_node_chunk_dim(self, node_from, node_from_dim, node_to):
node_from_source = self.trace_indice._find_source_trace_from_node(node_from)
dim_source = node_from_source[node_from_dim]
node_to_idx = find_idx_by_name(node_to.name, self.trace_indice.node_list)
for k, v in dim_source.items():
if k == node_to_idx:
return v
return None
def _find_inherit_dim(self, input_node, input_dim, node):
input_node_idx = find_idx_by_name(input_node.name, self.trace_indice.node_list)
node_trace_source = self.trace_indice._find_source_trace_from_node(node)
for node_dim in range(len(get_node_shape(node))):
if (
input_node_idx in node_trace_source[node_dim]
and input_dim[0] in node_trace_source[node_dim][input_node_idx]
):
return node_dim
return None
def check_index_duplicate(self, chunk_infos, return_dim=False):
input_dim_after_node = {}
for input_node_idx, input_node in enumerate(chunk_infos["inputs"]):
for k, v in chunk_infos["inputs_dim"][input_node_idx].items():
inherit_dim = self._find_inherit_dim(
input_node, v, self.trace_indice.node_list[k]
)
if inherit_dim:
input_dim_after_node[k] = inherit_dim
for node in self.trace_indice.node_list[
chunk_infos["region"][0] : chunk_infos["region"][1] + 1
]:
if is_non_compute_node_except_placeholder(node):
continue
count = 0
duplicate_dims = []
node_trace_source = self.trace_indice._find_source_trace_from_node(node)
for node_dim in range(len(get_node_shape(node))):
duplicate_dim = []
duplicate_flag = False
dim_source = node_trace_source[node_dim]
for k, v in dim_source.items():
if chunk_infos["region"][0] <= k <= chunk_infos["region"][1]:
if k in input_dim_after_node and input_dim_after_node[k] in v:
duplicate_flag = True
duplicate_dim.append((k, v))
duplicate_dims.append(duplicate_dim)
if duplicate_flag:
count += 1
if count > 1:
if return_dim:
return False, duplicate_dims
else:
return False
if return_dim:
return True, None
else:
return True
def _assgin_single_node_flow(
self,
arg_node,
start_idx,
end_idx,
cur_node_dim,
cur_node_compute,
cur_node_source,
cur_node_fix_dim,
all_node_info,
next_node_list,
):
arg_idx = find_idx_by_name(arg_node.name, self.trace_indice.node_list)
# arg in chunk range or be inputs
if not (start_idx <= arg_idx < end_idx):
return True
# find arg dim
if cur_node_dim is not None:
# dim is computed
if arg_idx in cur_node_compute[cur_node_dim]:
return False
if arg_idx not in cur_node_source[cur_node_dim]:
arg_dim = None
else:
arg_dim = cur_node_source[cur_node_dim][arg_idx][0]
else:
arg_dim = None
# get fix dim
arg_fix_dim = []
if cur_node_dim is not None:
for i in cur_node_fix_dim:
fix_dim_source = cur_node_source[i]
if arg_idx in fix_dim_source:
arg_fix_dim.append(fix_dim_source[arg_idx][0])
# if already in node_info, arg dim must be same
if arg_node in all_node_info:
if all_node_info[arg_node]["chunk_dim"] != arg_dim:
return False
all_node_info[arg_node]["fix_dim"] = list(
set(all_node_info[arg_node]["fix_dim"] + arg_fix_dim)
)
# else add it to list
else:
all_node_info[arg_node] = {"chunk_dim": arg_dim, "fix_dim": arg_fix_dim}
next_node_list.append(arg_node)
return True
def _get_all_node_info(self, end_dim, start_idx, end_idx):
cur_node_list = [
self.trace_indice.node_list[end_idx]
] # start from the last node
all_node_info = {cur_node_list[0]: {"chunk_dim": end_dim, "fix_dim": []}}
while len(cur_node_list) > 0:
next_node_list = []
for cur_node in cur_node_list:
# get cur node info
cur_node_chunk_dim = all_node_info[cur_node]["chunk_dim"]
cur_node_fix_dim = all_node_info[cur_node]["fix_dim"]
if cur_node_chunk_dim:
cur_node_compute = self.trace_indice._find_compute_trace_from_node(
cur_node
)
cur_node_source = self.trace_indice._find_source_trace_from_node(
cur_node
)
else:
cur_node_compute = cur_node_source = None
# get all valid args
arg_list = []
for arg in cur_node.args:
if type(arg) != type(cur_node):
continue
if is_non_compute_node(arg):
continue
arg_list.append(arg)
flow_flag = self._assgin_single_node_flow(
arg,
start_idx,
end_idx,
cur_node_chunk_dim,
cur_node_compute,
cur_node_source,
cur_node_fix_dim,
all_node_info,
next_node_list,
)
if flow_flag == False:
return None
if len(arg_list) == 2:
if any(i in cur_node.name for i in ["add", "mul"]):
for arg in arg_list:
if not (
start_idx
<= find_idx_by_name(
arg.name, self.trace_indice.node_list
)
< end_idx
):
continue
arg_chunk_dim = all_node_info[arg]["chunk_dim"]
arg_fix_dim = all_node_info[arg]["fix_dim"]
arg_shape = get_node_shape(arg)
# add all dim as fix dim except chunk dim
for i, shape in enumerate(arg_shape):
if shape != 1 and i != cur_node_chunk_dim:
if i == arg_chunk_dim:
return None
if i not in arg_fix_dim:
arg_fix_dim.append(i)
elif "einsum" in cur_node.name:
pass
elif "matmul" in cur_node.name:
pass
else:
raise NotImplementedError()
cur_node_list = next_node_list
return all_node_info
def _get_input_nodes_dim(self, inputs, start_idx, end_idx, all_node_info):
inputs_dim = []
remove_inputs = []
for input_node in inputs:
input_dict = {}
input_node_idx = find_idx_by_name(
input_node.name, self.trace_indice.node_list
)
for user in input_node.users.keys():
if is_non_compute_node(user):
continue
user_idx = find_idx_by_name(user.name, self.trace_indice.node_list)
if start_idx <= user_idx <= end_idx:
chunk_dim = all_node_info[user]["chunk_dim"]
if chunk_dim is not None:
user_source = self.trace_indice._find_source_trace_from_node(
user
)[chunk_dim]
if input_node_idx in user_source:
input_dict[user_idx] = user_source[input_node_idx]
else:
return None, None
if len(input_dict) == 0:
remove_inputs.append(input_node)
else:
inputs_dim.append(input_dict)
for i in remove_inputs:
if i in inputs:
inputs.remove(i)
return inputs, inputs_dim
def _get_prepose_nodes(self, all_node_info, start_idx, end_idx):
# get all possible prepose nodes
maybe_prepose_nodes = []
for node, node_info in all_node_info.items():
if node_info["chunk_dim"] is None:
maybe_prepose_nodes.append(node)
maybe_prepose_nodes.sort(
key=lambda x: find_idx_by_name(x.name, self.trace_indice.node_list),
reverse=True,
) # from last node to first node
prepose_nodes = []
# set every node as root, search its args, if all legal, turn root and args as prepose nodes
while len(maybe_prepose_nodes) > 0:
tmp_cur_prepose_nodes = [maybe_prepose_nodes[0]]
tmp_cur_related_prepose_nodes = []
prepose_flag = True
# loop cur node's all arg until out of chunk
while len(tmp_cur_prepose_nodes) > 0:
if prepose_flag == False:
break
tmp_next_prepose_nodes = []
tmp_cur_related_prepose_nodes.extend(tmp_cur_prepose_nodes)
for cur_prepose_node in tmp_cur_prepose_nodes:
if prepose_flag == False:
break
for cur_prepose_node_arg in cur_prepose_node.args:
if type(cur_prepose_node_arg) != type(cur_prepose_node):
continue
# out of loop
if not (
start_idx
<= find_idx_by_name(
cur_prepose_node_arg.name, self.trace_indice.node_list
)
< end_idx
):
continue
# compute op in loop
elif cur_prepose_node_arg in all_node_info:
if all_node_info[cur_prepose_node_arg]["chunk_dim"] is None:
tmp_next_prepose_nodes.append(cur_prepose_node_arg)
else:
prepose_flag = False
break
# non compute op
else:
tmp_next_prepose_nodes.append(cur_prepose_node_arg)
tmp_cur_prepose_nodes = tmp_next_prepose_nodes
if prepose_flag == False:
maybe_prepose_nodes.remove(maybe_prepose_nodes[0])
continue
else:
for n in tmp_cur_related_prepose_nodes:
if n not in prepose_nodes:
prepose_nodes.append(n)
if n in maybe_prepose_nodes:
maybe_prepose_nodes.remove(n)
# sort by index
prepose_nodes.sort(
key=lambda x: find_idx_by_name(x.name, self.trace_indice.node_list)
)
return prepose_nodes
def _get_non_chunk_inputs(self, chunk_info, start_idx, end_idx):
# we need to log input nodes to avoid deleteing them in the loop
chunk_node_list = self.trace_indice.node_list[start_idx : end_idx + 1]
# also need to get some prepose node's arg out of non_chunk_inputs
for n in chunk_info["args"]["prepose_nodes"]:
chunk_node_list.remove(n)
non_chunk_inputs = find_chunk_all_input_nodes(chunk_node_list)
for i in non_chunk_inputs:
if i not in chunk_info["inputs"]:
chunk_info["inputs_non_chunk"].append(i)
return chunk_info
def flow_search(self, start_idx, start_dim, end_idx, end_dim):
inputs, outputs = find_chunk_compute_input_and_output_nodes(
self.trace_indice.node_list[start_idx : end_idx + 1]
)
# only single ouput
if len(outputs) > 1:
return None
# get every node's chunk dim and fix dim
all_node_info = self._get_all_node_info(end_dim, start_idx, end_idx)
if all_node_info is None:
return None
# get input nodes' chunk dim
inputs, inputs_dim = self._get_input_nodes_dim(
inputs, start_idx, end_idx, all_node_info
)
if inputs is None:
return None
chunk_info = {
"region": (start_idx, end_idx),
"inputs": inputs,
"inputs_non_chunk": [],
"inputs_dim": inputs_dim,
"outputs": outputs,
"outputs_dim": end_dim,
"node_chunk_dim": all_node_info,
"args": {},
}
# move useless nodes ahead of loop
chunk_info["args"]["prepose_nodes"] = self._get_prepose_nodes(
all_node_info, start_idx, end_idx
)
# find non chunk inputs
chunk_info = self._get_non_chunk_inputs(chunk_info, start_idx, end_idx)
# reassgin reshape size, some size may have changed due to chunk
chunk_info = self._reassgin_reshape_size(chunk_info)
return chunk_info
def _reassgin_reshape_size(self, chunk_info):
chunk_region = chunk_info["region"]
reshape_size = {}
chunk_shape = get_node_shape(chunk_info["outputs"][0])[
chunk_info["outputs_dim"]
]
for node in self.trace_indice.node_list[chunk_region[0] : chunk_region[1] + 1]:
if any(i in node.name for i in ["reshape", "view"]):
reshape_args = node.args[1:]
reshape_log = self.trace_indice.indice_view_list[node]
chunk_dim = chunk_info["node_chunk_dim"][node]["chunk_dim"]
reshape_size[node.name] = {}
for reshape_arg_dim, reshape_arg in enumerate(reshape_args):
if reshape_arg_dim in reshape_log["dim_to"]:
continue
if reshape_arg_dim == chunk_dim:
reshape_size[node.name][reshape_arg.name] = (
"min(chunk_size, %d - chunk_idx)" % chunk_shape
)
chunk_info["reshape_size"] = reshape_size
return chunk_info

View File

@ -0,0 +1,559 @@
import copy
from typing import Dict, List, Tuple
from torch.fx.node import Node
from .utils import find_idx_by_name, get_node_shape
class TraceIndice(object):
"""
Trace all indice infomation for every node.
Indice is a logical concept. Equal dims can been treated as one indice.
eg. dim(x1) = [a, b, c]
dim(x2) = [d, e, f]
and we have x3 = x1 * x2.
then a=d, b=e, c=f, due to the broadcast property,
dim(x1)=dim(x2)=dim(x3)=[a, b, c]
This class will record every node's dims' indice, compute and source.
Attibutes:
node_list (List)
indice_trace_list (List): [{"indice": [...], "compute": [...], "source": [...]}, {...}]
indice_view_list (Dict): not used for now
indice_count (int): record indice number
Args:
node_list (List)
"""
def __init__(self, node_list: List) -> None:
self.node_list = node_list
self.indice_trace_list = self._init_indice_trace_list()
self.indice_view_list = {}
self.indice_count = -1
def _init_indice_trace_list(self):
indice_trace_list = []
for n in self.node_list:
if get_node_shape(n) != None:
cur_trace = {
"indice": [None for _ in range(len(get_node_shape(n)))],
"compute": [[] for _ in range(len(get_node_shape(n)))],
"source": [{} for _ in range(len(get_node_shape(n)))],
}
else:
cur_trace = {"indice": [], "compute": [], "source": []}
indice_trace_list.append(cur_trace)
return indice_trace_list
def _add_indice(self):
"""
Update the count and return it. To record the idx number.
Returns:
indice_count: int
"""
self.indice_count += 1
return self.indice_count
def _del_dim(self, idx, dim_idx):
self.indice_trace_list[idx]["indice"].pop(dim_idx)
self.indice_trace_list[idx]["compute"].pop(dim_idx)
self.indice_trace_list[idx]["source"].pop(dim_idx)
def _add_dim(self, node_idx, dim_idx):
self.indice_trace_list[node_idx]["indice"].insert(dim_idx, self._add_indice())
self.indice_trace_list[node_idx]["compute"].insert(dim_idx, [])
self.indice_trace_list[node_idx]["source"].insert(dim_idx, {})
def _transform_indice(self, node, node_dim):
node_idx = self._find_indice_trace_from_node(node)
dims = list(range(len(node_idx)))
return dims[node_dim]
def _inherit_indice(self, node_from, node_from_dim, node_to, node_to_dim):
node_from_dim = self._transform_indice(node_from, node_from_dim)
node_to_dim = self._transform_indice(node_to, node_to_dim)
node_from_trace = self._find_trace_from_node(node_from)
node_to_trace = self._find_trace_from_node(node_to)
node_to_trace["indice"][node_to_dim] = node_from_trace["indice"][node_from_dim]
node_to_trace["compute"][node_to_dim] = copy.deepcopy(
node_from_trace["compute"][node_from_dim]
)
self._add_source(node_from, node_from_dim, node_to, node_to_dim, init=True)
def _inherit_all_computation(self, node_from, node_to):
node_from_compute = self._find_compute_trace_from_node(node_from)
node_to_compute = self._find_compute_trace_from_node(node_to)
assert len(node_from_compute) == len(node_to_compute)
for i in range(len(node_from_compute)):
self._add_source(node_from, i, node_to, i)
node_to_compute[i] = copy.deepcopy(node_from_compute[i])
def _add_source(self, node_from, node_from_dim, node_to, node_to_dim, init=False):
node_from_dim = self._transform_indice(node_from, node_from_dim)
node_from_trace_source = self._find_source_trace_from_node(node_from)
node_to_dim = self._transform_indice(node_to, node_to_dim)
node_to_trace_source = self._find_source_trace_from_node(node_to)
node_from_idx = find_idx_by_name(node_from.name, self.node_list)
if init:
node_to_trace_source[node_to_dim] = {}
# add dim to cur new source
if node_from_idx not in node_to_trace_source[node_to_dim]:
node_to_trace_source[node_to_dim][node_from_idx] = [node_from_dim]
else:
if node_from_dim not in node_to_trace_source[node_to_dim][node_from_idx]:
node_to_trace_source[node_to_dim][node_from_idx].append(node_from_dim)
# update inputs source
for node_idx, node_dim in node_from_trace_source[node_from_dim].items():
if node_idx not in node_to_trace_source[node_to_dim]:
node_to_trace_source[node_to_dim][node_idx] = copy.deepcopy(node_dim)
else:
for d in node_dim:
if d not in node_to_trace_source[node_to_dim][node_idx]:
node_to_trace_source[node_to_dim][node_idx].append(d)
def _mark_computation_from_node(self, node_from, node_to, exclude=None):
if exclude == None:
exclude = []
else:
exclude = [self._transform_indice(node_to, i) for i in exclude]
node_from_compute = self._find_compute_trace_from_node(node_from)
node_to_compute = self._find_compute_trace_from_node(node_to)
# assert len(node_from_compute) == len(node_to_compute)
for i in range(-1, -min(len(node_from_compute), len(node_to_compute)) - 1, -1):
if self._transform_indice(node_to, i) in exclude:
continue
self._add_source(node_from, i, node_to, i)
for j in node_from_compute[i]:
if j not in node_to_compute[i]:
node_to_compute[i].append(j)
def _mark_computation(self, node, idx, dim):
"""
Mark some dims of node as computed.
Args:
node (node)
idx (int): node index
dim (list or int): dims to be marked as computed
"""
if isinstance(dim, int):
dim = [dim]
dims = list(range(len(get_node_shape(node))))
for d in dim:
cur_dim = dims[d]
if idx not in self.indice_trace_list[idx]["compute"][cur_dim]:
self.indice_trace_list[idx]["compute"][cur_dim].append(idx)
def _find_trace_from_node(self, node):
"""
Find node idx and compute trace by the node.
Args:
node (node)
Returns:
idx (list): idx of the node
compute (list): computed idx of the node.
"""
node_idx = find_idx_by_name(node.name, self.node_list)
node_dict = self.indice_trace_list[node_idx]
return node_dict
def _find_source_trace_from_node(self, node):
"""
Find node source trace by the node.
Args:
node (node)
Returns:
idx (list): idx of the node
compute (list): computed idx of the node.
"""
node_idx = find_idx_by_name(node.name, self.node_list)
node_dict = self.indice_trace_list[node_idx]
return node_dict["source"]
def _find_indice_trace_from_node(self, node):
"""
Find node idx trace by the node.
Args:
node (node)
Returns:
idx (list): idx of the node
"""
node_idx = find_idx_by_name(node.name, self.node_list)
return self.indice_trace_list[node_idx]["indice"]
def _find_compute_trace_from_node(self, node):
"""
Find node compute trace by the node.
Args:
node (node)
Returns:
compute (list): computed idx of the node.
"""
node_idx = find_idx_by_name(node.name, self.node_list)
return self.indice_trace_list[node_idx]["compute"]
def _assign_indice_as_input(self, node, node_idx, input_node=None):
"""
Assign node's trace as its input node.
Args:
node (node)
node_idx (int)
"""
if input_node == None:
input_node = node.args[0]
input_node_idx = find_idx_by_name(input_node.name, self.node_list)
input_node_idx_trace = self.indice_trace_list[input_node_idx]["indice"]
new_idx_trace = copy.deepcopy(input_node_idx_trace)
self.indice_trace_list[node_idx]["indice"] = new_idx_trace
self._inherit_all_computation(input_node, node)
def _assign_all_indice(self, node, node_idx):
"""
Add new indice for all node's dims.
Args:
node (node)
node_idx (int)
"""
shape = node.meta["tensor_meta"].shape
new_trace = []
for _ in shape:
new_trace.append(self._add_indice())
self.indice_trace_list[node_idx]["indice"] = new_trace
def _assign_transpose_indice(self, node, node_idx):
"""
Assign indice for transpose op.
1. swap input's dim according to transpose args
2. inherit input's computation
Args:
node (node)
node_idx (int)
"""
input_node = node.args[0]
tranpose_dim = node.args[1:]
self._assign_indice_as_input(node, node_idx, input_node)
self._inherit_indice(input_node, tranpose_dim[1], node, tranpose_dim[0])
self._inherit_indice(input_node, tranpose_dim[0], node, tranpose_dim[1])
def _assign_permute_indice(self, node, node_idx):
"""
Assign indice for permute op.
1. swap input's dim according to permute args
2. inherit input's computation
Args:
node (node)
node_idx (int)
"""
permute_dim = node.args[1:]
input_node = node.args[0]
self._assign_indice_as_input(node, node_idx, input_node)
for idx, d in enumerate(permute_dim):
self._inherit_indice(input_node, d, node, idx)
def _assign_linear_indice(self, node, node_idx):
"""
Assign indice for linear op.
1. copy trace from input node and change last indice accroding to weight
2. mark equal for input node last indice, weight first dim and bias dim.
3. inherit input's computation, mark computation for last dim.
Args:
node (node)
node_idx (int)
"""
if len(node.args) == 2:
_, weight = node.args
else:
_, weight, _ = node.args
self._assign_indice_as_input(node, node_idx)
self._inherit_indice(weight, 1, node, -1)
self._mark_computation(node, node_idx, [-1])
def _assign_matmul_indice(self, node, node_idx):
"""
Assign indice for matmul op.
1. copy trace from matmul_left and change last indice accroding to matmul_right. (assert they have same length)
2. mark equal for input matmul_left -1 indice and matmul_right -2 dim.
3. inherit matmul_left and matmul_right computation, mark computation for last dim.
Args:
node (node)
node_idx (int)
"""
matmul_left, matmul_right = node.args
assert len(get_node_shape(matmul_left)) == len(get_node_shape(matmul_right))
self._assign_indice_as_input(node, node_idx, matmul_left)
self._inherit_indice(matmul_right, -1, node, -1)
self._mark_computation_from_node(matmul_right, node, [-1, -2])
self._mark_computation(node, node_idx, [-1])
def _assign_layernorm_indice(self, node, idx):
"""
Assign indice for layernorm op.
1. assign indice as input node
2. inherit computation and mark last 2 dims as computed.
Args:
node (node)
node_idx (int)
"""
self._assign_indice_as_input(node, idx)
self._mark_computation(node, idx, [-1])
def _assign_elementwise_indice(self, node, idx):
"""
Assign indice for element-wise op (eg. relu sigmoid add mul).
1. assign indice as input node
2. inherit computation from all input nodes.
Args:
node (node)
node_idx (int)
"""
self._assign_indice_as_input(node, idx)
nodes_in = []
for node_in in node.args:
if type(node_in) == type(node):
nodes_in.append(node_in)
self._mark_computation_from_node(node_in, node)
assert len(nodes_in) <= 2
def _assgin_no_change_indice(self, node, idx):
self._assign_indice_as_input(node, idx)
for node_in in node.args:
if type(node_in) == type(node):
self._mark_computation_from_node(node_in, node)
def _assign_einsum_indice(self, node, idx):
"""
Assign indice for einsum op.
Args:
node (node)
node_idx (int)
"""
patterns = node.args[0]
input_nodes = node.args[1:]
patterns = patterns.replace(" ", "")
left, right = patterns.split("->")
left = left.split(",")
all_index = []
for i in left:
for c in i:
all_index.append(c)
all_index = set(all_index)
for right_idx, right_indice in enumerate(right):
for left_idx, left_str in enumerate(left):
if right_indice in left_str:
source_idx = left_str.index(right_indice)
self._inherit_indice(
input_nodes[left_idx], source_idx, node, right_idx
)
def _assign_softmax_indice(self, node, idx):
"""
Assign indice for softmax op.
1. assign indice as input node
2. inherit computation and mark softmax dim as computed.
Args:
node (node)
node_idx (int)
"""
self._assign_indice_as_input(node, idx)
self._mark_computation(node, idx, [node.kwargs["dim"]])
def _assign_unsqueeze_indice(self, node, node_idx):
"""
Assign indice for unsqueeze op.
1. assign new indice for unsqueeze dim
Args:
node (node)
node_idx (int)
"""
self._del_dim(node_idx, -1)
self._assign_indice_as_input(node, node_idx)
self._add_dim(node_idx, node.args[1])
def _assign_dropout_indice(self, node, node_idx):
"""
Assign indice for unsqueeze op.
1. assign new indice for unsqueeze dim
Args:
node (node)
node_idx (int)
"""
self._assign_indice_as_input(node, node_idx)
def _assign_ones_like_indice(self, node, node_idx):
"""
Assign indice for oneslike op.
1. assign new indice for all dim
Args:
node (node)
node_idx (int)
"""
self._assign_all_indice(node, node_idx)
def _assign_view_reshape_indice(self, node, node_idx):
"""
Assign indice for view and reshape op.
1. get origin shape and target shape by meta info.
2. compute the real value of -1 in target shape.
3. determine changed dim, and assgin indice for generated dim.
4. log changed dim and generated dim for restore
5. inherit computation.
6. TODO: look into view list to see whether the view is associated with other,
if so assgin equal dim according to previous view.
Args:
node (node)
node_idx (int)
"""
# get data, turn into number
origin_node = node.args[0]
origin_shape = origin_node.meta["tensor_meta"].shape
target_shape = []
for i in range(1, len(node.args)):
if isinstance(node.args[i], int):
target_shape.append(node.args[i])
else:
target_shape.append(node.args[i].meta["fwd_out"][0])
# compute the value of -1
if -1 in target_shape:
origin_product = 1
for i in origin_shape:
origin_product *= i
target_product = -1
for i in target_shape:
target_product *= i
shape_idx = target_shape.index(-1)
target_shape[shape_idx] = origin_product // target_product
# determine changed dim
len_diff = len(origin_shape) - len(target_shape)
if len_diff == 1:
# dim merge
dim_equal = [i == j for i, j in zip(origin_shape[:-1], target_shape)]
dim_to = [dim_equal.index(False)]
dim_from = [dim_equal.index(False), dim_equal.index(False) + 1]
self._add_dim(node_idx, -1)
elif len_diff == -1:
# dim expand
dim_equal = [i == j for i, j in zip(origin_shape, target_shape[:-1])]
dim_from = [dim_equal.index(False)]
dim_to = [dim_equal.index(False), dim_equal.index(False) + 1]
self._del_dim(node_idx, -1)
else:
raise NotImplementedError(
"shape"
+ str(origin_shape)
+ "and"
+ str(target_shape)
+ "view not implemented"
)
# get new indice
origin_trace = self._find_indice_trace_from_node(origin_node)
self._assign_indice_as_input(node, node_idx, origin_node)
dim_from.reverse()
for i in dim_from:
self._del_dim(node_idx, i)
for i in dim_to:
self._add_dim(node_idx, i)
# inherit computation
compute_log = self._find_compute_trace_from_node(origin_node)
for i in dim_from:
if origin_trace[i] in compute_log:
for j in dim_to:
self._mark_computation(node, node_idx, [j])
break
# log view, not used now
view_dict = {
"idx_from": [origin_trace[i] for i in dim_from],
"dim_from": dim_from,
"idx_to": [self.indice_trace_list[node_idx]["indice"][i] for i in dim_to],
"dim_to": dim_to,
}
self.indice_view_list[node] = view_dict
def trace_indice(self):
for idx, node in enumerate(self.node_list):
if node.op == "placeholder":
self._assign_all_indice(node, idx)
elif node.op == "call_method":
if "transpose" in node.name:
self._assign_transpose_indice(node, idx)
elif "permute" in node.name:
self._assign_permute_indice(node, idx)
elif "view" in node.name or "reshape" in node.name:
self._assign_view_reshape_indice(node, idx)
elif "unsqueeze" in node.name:
self._assign_unsqueeze_indice(node, idx)
elif any(i in node.name for i in ["to", "contiguous"]):
self._assgin_no_change_indice(node, idx)
else:
raise NotImplementedError(node.name, "method not implemented yet!")
elif node.op == "call_function":
if "linear" in node.name:
self._assign_linear_indice(node, idx)
elif "matmul" in node.name:
self._assign_matmul_indice(node, idx)
elif "softmax" in node.name:
self._assign_softmax_indice(node, idx)
elif any(n in node.name for n in ["mul", "add", "sigmoid", "relu"]):
self._assign_elementwise_indice(node, idx)
elif "ones_like" in node.name:
self._assign_ones_like_indice(node, idx)
elif "dropout" in node.name:
self._assign_dropout_indice(node, idx)
elif "einsum" in node.name:
self._assign_einsum_indice(node, idx)
elif "getattr" in node.name:
continue # get attr like shape
elif "getitem" in node.name:
continue # get item in list
else:
raise NotImplementedError(
node.name, "function not implemented yet!"
)
elif node.op == "call_module":
if any(n in node.name for n in ["layernorm", "norm"]):
self._assign_layernorm_indice(node, idx)
else:
raise NotImplementedError(node.name, "module not implemented yet!")
elif node.op == "get_attr":
self._assign_all_indice(node, idx) # get param
elif node.op == "output":
continue
else:
raise NotImplementedError(node.op, "op not implemented yet!")

View File

@ -0,0 +1,95 @@
from typing import Any, Callable, Dict, Iterable, List, Tuple
from torch.fx.node import Node
def is_non_compute_node(node):
if any(i in node.op for i in ["placeholder", "get_attr", "output"]) or any(
i in node.name for i in ["getitem", "getattr"]
):
return True
return False
def get_node_shape(node):
if hasattr(node.meta["tensor_meta"], "shape"):
return node.meta["tensor_meta"].shape
return None
def is_non_compute_node_except_placeholder(node):
if any(i in node.op for i in ["get_attr", "output"]) or any(
i in node.name for i in ["getitem", "getattr"]
):
return True
return False
def is_non_compute_node_except_placeholder_output(node):
if any(i in node.op for i in ["get_attr"]) or any(
i in node.name for i in ["getitem", "getattr"]
):
return True
return False
def find_idx_by_name(name, nodes_list):
for idx, node in enumerate(nodes_list):
if node.name == name:
return idx
raise RuntimeError("name %s not found in node list" % name)
def delete_free_var_from_last_use(user_to_last_uses):
for key, value in user_to_last_uses.items():
for n in value:
if n.op == "placeholder":
user_to_last_uses[key].remove(n)
def find_chunk_all_input_nodes(nodes: List[Node]):
"""
Find non-compute input and output node names.
input nodes are nodes used in the list
output nodes are nodes will use nodes in the list
"""
input_nodes = []
for node in nodes:
for input_node in node._input_nodes.keys():
if input_node not in nodes and input_node not in input_nodes:
input_nodes.append(input_node)
return input_nodes
def find_chunk_compute_input_and_output_nodes(nodes: List[Node]):
"""
Find non-compute input and output node names.
input nodes are nodes used in the list
output nodes are nodes will use nodes in the list
"""
input_nodes = []
output_nodes = []
# if a node has an input node which is not in the node list
# we treat that input node as the input of the checkpoint function
for node in nodes:
for input_node in node._input_nodes.keys():
if (
input_node not in nodes
and input_node not in input_nodes
and not is_non_compute_node_except_placeholder(input_node)
):
input_nodes.append(input_node)
# if a node has a user node which is not in the node list
# we treat that user node as the node receiving the current node output
for node in nodes:
for output_node in node.users.keys():
if (
output_node not in nodes
and node not in output_nodes
and not is_non_compute_node_except_placeholder_output(output_node)
):
output_nodes.append(node)
return input_nodes, output_nodes

View File

@ -0,0 +1,122 @@
import time
import torch
import torch.fx
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.fx import ColoTracer
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.fx.profiler import MetaTensor
from tests.test_autochunk.evoformer.evoformer import evoformer_base
from tests.test_autochunk.openfold.evoformer import EvoformerBlock
def _benchmark_evoformer(model: torch.nn.Module, node, pair, title, chunk_size=None):
torch.cuda.reset_peak_memory_stats()
now_mem = torch.cuda.memory_allocated() / 1024**2
loop = 3
with torch.no_grad():
for _ in range(loop // 2 + 1):
if chunk_size:
model(node, pair, chunk_size)
else:
model(node, pair)
torch.cuda.synchronize()
time1 = time.time()
for _ in range(loop):
if chunk_size:
model(node, pair, chunk_size)
else:
model(node, pair)
torch.cuda.synchronize()
time2 = time.time()
new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
print(
"%s: time %.4fs, mem %dMB"
% (title, (time2 - time1) / loop, new_max_mem - now_mem)
)
def _build_autochunk(model, max_memory, node, pair):
# trace the module and replace codegen
graph = ColoTracer().trace(
model,
meta_args={
"node": node.to(torch.device("meta")),
"pair": pair.to(torch.device("meta")),
},
)
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
interp = MetaInfoProp(gm_prop)
interp.propagate(
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
)
# now run it twice to get meta info in graph module, not necessary
gm = torch.fx.GraphModule(model, graph)
interp = MetaInfoProp(gm)
interp.propagate(
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
)
# set code_gen
codegen = AutoChunkCodeGen(gm_prop, max_memory, print_mem=False)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph)
gm.recompile()
# print
# code = graph.python_code("self").src
# print(code)
return gm
def _build_openfold():
model = EvoformerBlock(
c_m=256,
c_z=128,
c_hidden_msa_att=32,
c_hidden_opm=32,
c_hidden_mul=128,
c_hidden_pair_att=32,
no_heads_msa=8,
no_heads_pair=4,
transition_n=4,
msa_dropout=0.15,
pair_dropout=0.15,
inf=1e4,
eps=1e-4,
is_multimer=False,
).cuda()
return model
def benchmark_evoformer():
# init data and model
msa_len = 256
pair_len = 512
node = torch.randn(1, msa_len, pair_len, 256).cuda()
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
model = evoformer_base().cuda()
# build autochunk model
# max_memory = 1000 # MB, fit memory mode
max_memory = None # min memory mode
autochunk = _build_autochunk(evoformer_base().cuda(), max_memory, node, pair)
# build openfold
chunk_size = 64
openfold = _build_openfold()
# benchmark
_benchmark_evoformer(model, node, pair, "base")
_benchmark_evoformer(openfold, node, pair, "openfold", chunk_size=chunk_size)
_benchmark_evoformer(autochunk, node, pair, "autochunk")
if __name__ == "__main__":
benchmark_evoformer()

View File

@ -0,0 +1,59 @@
import torch
import torch.nn as nn
from .msa import MSAStack
from .ops import OutProductMean
from .triangle import PairStack
def print_memory(init_mem, text=None):
now_mem = torch.cuda.memory_allocated() / 1024 ** 2 - init_mem
max_mem = torch.cuda.max_memory_allocated() / 1024 ** 2 - init_mem
print("%s now:%.2f max:%.2f" % ("" if text is None else text, now_mem, max_mem))
torch.cuda.reset_peak_memory_stats()
class EvoformerBlock(nn.Module):
def __init__(self, d_node, d_pair):
super(EvoformerBlock, self).__init__()
self.msa_stack = MSAStack(d_node, d_pair, p_drop=0.15)
self.communication = OutProductMean(n_feat=d_node, n_feat_out=d_pair, n_feat_proj=32)
self.pair_stack = PairStack(d_pair=d_pair)
def forward(self, node, pair):
node = self.msa_stack(node, pair)
pair = pair + self.communication(node)
pair = self.pair_stack(pair)
return node, pair
class Evoformer(nn.Module):
def __init__(self, d_node, d_pair):
super(Evoformer, self).__init__()
self.blocks = nn.ModuleList()
for _ in range(1):
self.blocks.append(EvoformerBlock(d_node, d_pair))
def forward(self, node, pair):
for b in self.blocks:
node, pair = b(node, pair)
return node, pair
def evoformer_tiny():
return Evoformer(d_node=64, d_pair=32)
def evoformer_base():
return Evoformer(d_node=256, d_pair=128)
def evoformer_large():
return Evoformer(d_node=512, d_pair=256)
__all__ = ['Evoformer', 'evoformer_base', 'evoformer_large']

View File

@ -0,0 +1,29 @@
import math
import numpy as np
import torch.nn as nn
def glorot_uniform_af(x, gain=1.0):
"""
initialize tensors the same as xavier_initializer in PyTorch, but the dimensions are different:
In PyTorch:
[feature_out, feature_in, n_head ...]
In Jax:
[... n_head, feature_in, feature_out]
However, there is a feature in original Alphafold2 code that they use the Jax version initializer to initialize tensors like:
[feature_in, n_head, feature_out]
In this function, we keep this feature to initialize [feature_in, n_head, ..., feature_out] tensors
"""
fan_in, fan_out = x.shape[-2:]
if len(x.shape) > 2:
receptive_field_size = np.prod(x.shape[:-2])
fan_in *= receptive_field_size
fan_out *= receptive_field_size
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
dev = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
nn.init.uniform_(x, -dev, dev)
return x

View File

@ -0,0 +1,19 @@
import torch
import torch.nn.functional as F
def bias_sigmod_ele(y, bias, z):
return torch.sigmoid(y + bias) * z
def bias_dropout_add(x: torch.Tensor, bias: torch.Tensor, dropmask: torch.Tensor,
residual: torch.Tensor, prob: float) -> torch.Tensor:
out = (x + bias) * F.dropout(dropmask, p=prob, training=False)
out = residual + out
return out
def bias_ele_dropout_residual(ab: torch.Tensor, b: torch.Tensor, g: torch.Tensor,
dropout_mask: torch.Tensor, Z_raw: torch.Tensor,
prob: float) -> torch.Tensor:
return Z_raw + F.dropout(dropout_mask, p=prob, training=True) * (g * (ab + b))

View File

@ -0,0 +1,95 @@
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn import LayerNorm
from .kernel import bias_dropout_add
from .ops import SelfAttention, Transition
class MSARowAttentionWithPairBias(nn.Module):
def __init__(self, d_node, d_pair, c=32, n_head=8, p_drop=0.15):
super(MSARowAttentionWithPairBias, self).__init__()
self.d_node = d_node
self.d_pair = d_pair
self.c = c
self.n_head = n_head
self.p_drop = p_drop
self.layernormM = LayerNorm(d_node)
self.layernormZ = LayerNorm(d_pair)
_init_weights = torch.nn.init.normal_(torch.zeros([n_head, d_pair]),
std=1.0 / math.sqrt(d_pair))
self.linear_b_weights = nn.parameter.Parameter(data=_init_weights, requires_grad=True)
self.attention = SelfAttention(qkv_dim=d_node,
c=c,
n_head=n_head,
out_dim=d_node,
gating=True,
last_bias_fuse=True)
self.out_bias = nn.parameter.Parameter(data=torch.zeros((d_node,)), requires_grad=True)
def forward(self, M_raw, Z):
## Input projections
M = self.layernormM(M_raw)
Z = self.layernormZ(Z)
b = F.linear(Z, self.linear_b_weights)
b = b.permute(0, 3, 1, 2)
# b = rearrange(b, 'b q k h -> b h q k')
M = self.attention(M, b)
dropout_mask = torch.ones_like(M[:, 0:1, :, :]).to(M.device).to(M.dtype)
return bias_dropout_add(M, self.out_bias, dropout_mask, M_raw, prob=self.p_drop)
class MSAColumnAttention(nn.Module):
def __init__(self, d_node, c=32, n_head=8):
super(MSAColumnAttention, self).__init__()
self.d_node = d_node
self.c = c
self.n_head = n_head
self.layernormM = LayerNorm(d_node)
self.attention = SelfAttention(qkv_dim=d_node,
c=c,
n_head=n_head,
out_dim=d_node,
gating=True)
def forward(self, M_raw):
M = M_raw.transpose(-2, -3)
M = self.layernormM(M)
M = self.attention(M)
M = M.transpose(-2, -3)
return M_raw + M
class MSAStack(nn.Module):
def __init__(self, d_node, d_pair, p_drop=0.15):
super(MSAStack, self).__init__()
self.MSARowAttentionWithPairBias = MSARowAttentionWithPairBias(d_node=d_node,
d_pair=d_pair,
p_drop=p_drop)
self.MSAColumnAttention = MSAColumnAttention(d_node=d_node)
self.MSATransition = Transition(d=d_node)
def forward(self, node, pair):
node = self.MSARowAttentionWithPairBias(node, pair)
node = self.MSAColumnAttention(node)
node = self.MSATransition(node)
return node

View File

@ -0,0 +1,176 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn import LayerNorm
from .initializer import glorot_uniform_af
from .kernel import bias_sigmod_ele
class DropoutRowwise(nn.Module):
def __init__(self, p):
super(DropoutRowwise, self).__init__()
self.p = p
self.dropout = nn.Dropout(p=p)
def forward(self, x):
dropout_mask = torch.ones_like(x[:, 0:1, :, :])
dropout_mask = self.dropout(dropout_mask)
return dropout_mask * x
class DropoutColumnwise(nn.Module):
def __init__(self, p):
super(DropoutColumnwise, self).__init__()
self.p = p
self.dropout = nn.Dropout(p=p)
def forward(self, x):
dropout_mask = torch.ones_like(x[:, :, 0:1, :])
dropout_mask = self.dropout(dropout_mask)
return dropout_mask * x
class Transition(nn.Module):
def __init__(self, d, n=4):
super(Transition, self).__init__()
self.norm = LayerNorm(d)
self.linear1 = Linear(d, n * d, initializer='relu')
self.linear2 = Linear(n * d, d, initializer='zeros')
def forward(self, src):
x = self.norm(src)
x = self.linear2(F.relu(self.linear1(x)))
return src + x
class OutProductMean(nn.Module):
def __init__(self, n_feat=64, n_feat_out=128, n_feat_proj=32):
super(OutProductMean, self).__init__()
self.layernormM = LayerNorm(n_feat)
self.linear_a = Linear(n_feat, n_feat_proj)
self.linear_b = Linear(n_feat, n_feat_proj)
self.o_linear = Linear(n_feat_proj * n_feat_proj,
n_feat_out,
initializer='zero',
use_bias=True)
def forward(self, M):
M = self.layernormM(M)
left_act = self.linear_a(M)
right_act = self.linear_b(M)
o = torch.einsum('bsid,bsje->bijde', left_act, right_act).contiguous()
# O = rearrange(O, 'b i j d e -> b i j (d e)')
o = o.reshape(o.shape[0], o.shape[1], o.shape[2], -1)
Z = self.o_linear(o)
return Z
class Linear(nn.Linear):
"""
A Linear layer with built-in nonstandard initializations. Called just
like torch.nn.Linear.
Implements the initializers in 1.11.4, plus some additional ones found
in the code.
"""
def __init__(
self,
feature_in: int,
feature_out: int,
initializer: str = 'linear',
use_bias: bool = True,
bias_init: float = 0.,
):
super(Linear, self).__init__(feature_in, feature_out, bias=use_bias)
self.use_bias = use_bias
if initializer == 'linear':
glorot_uniform_af(self.weight, gain=1.0)
elif initializer == 'relu':
glorot_uniform_af(self.weight, gain=2.0)
elif initializer == 'zeros':
nn.init.zeros_(self.weight)
if self.use_bias:
with torch.no_grad():
self.bias.fill_(bias_init)
class SelfAttention(nn.Module):
"""
Multi-Head SelfAttention dealing with [batch_size1, batch_size2, len, dim] tensors
"""
def __init__(self, qkv_dim, c, n_head, out_dim, gating=True, last_bias_fuse=False):
super(SelfAttention, self).__init__()
self.qkv_dim = qkv_dim
self.c = c
self.n_head = n_head
self.out_dim = out_dim
self.gating = gating
self.last_bias_fuse = last_bias_fuse
self.scaling = self.c**(-0.5)
# self.to_qkv = Linear(qkv_dim, 3 * n_head * c, initializer='linear')
self.to_q = Linear(qkv_dim, n_head * c, initializer='linear', use_bias=False)
self.to_k = Linear(qkv_dim, n_head * c, initializer='linear', use_bias=False)
self.to_v = Linear(qkv_dim, n_head * c, initializer='linear', use_bias=False)
if gating:
self.gating_bias = nn.parameter.Parameter(data=torch.ones((n_head * c,)))
self.gating_linear = Linear(qkv_dim, n_head * c, initializer='zero', use_bias=False)
self.o_linear = Linear(n_head * c,
out_dim,
initializer='zero',
use_bias=(not last_bias_fuse))
def forward(self, in_data, nonbatched_bias=None):
"""
:param in_data: [batch_size1, batch_size2, len_qkv, qkv_dim]
:param bias: None or [batch_size1, batch_size2, n_head, len_q, len_kv]
:param nonbatched_bias: None or [batch_size1, n_head, len_q, len_kv]
"""
# qkv = self.to_qkv(in_data).chunk(3, dim=-1)
# q, k, v = map(lambda t: rearrange(t, 'b1 b2 n (h d) -> b1 b2 h n d', h=self.n_head), qkv)
q = self.to_q(in_data)
k = self.to_k(in_data)
v = self.to_v(in_data)
# q, k, v = map(lambda t: rearrange(t, 'b1 b2 n (h d) -> b1 b2 h n d', h=self.n_head),
# [q, k, v])
q, k, v = map(lambda t: t.view(t.shape[0], t.shape[1], t.shape[2], self.n_head, -1).permute(0, 1, 3, 2, 4),
[q, k, v])
q = q * self.scaling
logits = torch.matmul(q, k.transpose(-1, -2))
if nonbatched_bias is not None:
logits += nonbatched_bias.unsqueeze(1)
weights = torch.softmax(logits, dim=-1)
# weights = softmax(logits)
weighted_avg = torch.matmul(weights, v)
# weighted_avg = rearrange(weighted_avg, 'b1 b2 h n d -> b1 b2 n (h d)')
weighted_avg = weighted_avg.permute(0, 1, 3, 2, 4)
weighted_avg = weighted_avg.reshape(weighted_avg.shape[0], weighted_avg.shape[1], weighted_avg.shape[2], -1)
if self.gating:
gate_values = self.gating_linear(in_data)
weighted_avg = bias_sigmod_ele(gate_values, self.gating_bias, weighted_avg)
output = self.o_linear(weighted_avg)
return output

View File

@ -0,0 +1,192 @@
import math
import torch
import torch.nn as nn
from torch.nn import LayerNorm
from .kernel import bias_dropout_add, bias_ele_dropout_residual
from .ops import Linear, SelfAttention, Transition
def permute_final_dims(tensor, inds):
zero_index = -1 * len(inds)
first_inds = list(range(len(tensor.shape[:zero_index])))
return tensor.permute(first_inds + [zero_index + i for i in inds])
class TriangleMultiplicationOutgoing(nn.Module):
def __init__(self, d_pair, p_drop, c=128):
super(TriangleMultiplicationOutgoing, self).__init__()
self.d_pair = d_pair
self.c = c
self.layernorm1 = LayerNorm(d_pair)
self.left_projection = Linear(d_pair, c)
self.right_projection = Linear(d_pair, c)
self.left_gate = Linear(d_pair, c, initializer='zeros', bias_init=1.)
self.right_gate = Linear(d_pair, c, initializer='zeros', bias_init=1.)
self.output_gate = Linear(d_pair, d_pair, initializer='zeros', bias_init=1.)
self.layernorm2 = LayerNorm(c)
self.output_projection = Linear(d_pair, d_pair, initializer='zeros', use_bias=False)
self.output_bias = nn.parameter.Parameter(data=torch.zeros((d_pair,)), requires_grad=True)
self.p_drop = p_drop
def forward(self, Z_raw):
Z = self.layernorm1(Z_raw)
left_proj_act = self.left_projection(Z)
right_proj_act = self.right_projection(Z)
left_proj_act = left_proj_act * torch.sigmoid(self.left_gate(Z))
right_proj_act = right_proj_act * torch.sigmoid(self.right_gate(Z))
g = torch.sigmoid(self.output_gate(Z))
# p = torch.matmul(
# permute_final_dims(left_proj_act, (2, 0, 1)),
# permute_final_dims(right_proj_act, (2, 1, 0)),
# )
# ab = permute_final_dims(p, (1, 2, 0))
ab = torch.einsum('bikd,bjkd->bijd', left_proj_act, right_proj_act)
ab = self.output_projection(self.layernorm2(ab))
dropout_mask = torch.ones_like(Z[:, 0:1, :, :]).to(Z.device).to(Z.dtype)
return bias_ele_dropout_residual(ab,
self.output_bias,
g,
dropout_mask,
Z_raw,
prob=self.p_drop)
class TriangleMultiplicationIncoming(nn.Module):
def __init__(self, d_pair, p_drop, c=128):
super(TriangleMultiplicationIncoming, self).__init__()
self.d_pair = d_pair
self.c = c
self.layernorm1 = LayerNorm(d_pair)
self.left_projection = Linear(d_pair, c)
self.right_projection = Linear(d_pair, c)
self.left_gate = Linear(d_pair, c, initializer='zeros', bias_init=1.)
self.right_gate = Linear(d_pair, c, initializer='zeros', bias_init=1.)
self.output_gate = Linear(d_pair, d_pair, initializer='zeros', bias_init=1.)
self.layernorm2 = LayerNorm(c)
self.output_projection = Linear(d_pair, d_pair, initializer='zeros', use_bias=False)
self.output_bias = nn.parameter.Parameter(data=torch.zeros((d_pair,)), requires_grad=True)
self.p_drop = p_drop
def forward(self, Z_raw):
Z = self.layernorm1(Z_raw)
left_proj_act = self.left_projection(Z)
right_proj_act = self.right_projection(Z)
left_proj_act = left_proj_act * torch.sigmoid(self.left_gate(Z))
right_proj_act = right_proj_act * torch.sigmoid(self.right_gate(Z))
g = torch.sigmoid(self.output_gate(Z))
# p = torch.matmul(
# permute_final_dims(left_proj_act, (2, 1, 0)),
# permute_final_dims(right_proj_act, (2, 0, 1)),
# )
# ab = permute_final_dims(p, (1, 2, 0))
ab = torch.einsum('bkid,bkjd->bijd', left_proj_act, right_proj_act)
ab = self.output_projection(self.layernorm2(ab))
dropout_mask = torch.ones_like(Z[:, 0:1, :, :]).to(Z.device).to(Z.dtype)
return bias_ele_dropout_residual(ab,
self.output_bias,
g,
dropout_mask,
Z_raw,
prob=self.p_drop)
class TriangleAttentionStartingNode(nn.Module):
def __init__(self, d_pair, p_drop, c=32, n_head=4):
super(TriangleAttentionStartingNode, self).__init__()
self.d_pair = d_pair
self.c = c
self.n_head = n_head
self.p_drop = p_drop
self.layernorm1 = LayerNorm(d_pair)
_init_weights = torch.nn.init.normal_(torch.zeros([d_pair, n_head]),
std=1.0 / math.sqrt(d_pair))
self.linear_b_weights = nn.parameter.Parameter(data=_init_weights)
self.attention = SelfAttention(qkv_dim=d_pair,
c=c,
n_head=n_head,
out_dim=d_pair,
gating=True,
last_bias_fuse=True)
self.out_bias = nn.parameter.Parameter(data=torch.zeros((d_pair,)), requires_grad=True)
def forward(self, Z_raw):
Z = self.layernorm1(Z_raw)
b = torch.einsum('bqkc,ch->bhqk', Z, self.linear_b_weights)
Z = self.attention(Z, b)
dropout_mask = torch.ones_like(Z[:, 0:1, :, :]).to(Z.device).to(Z.dtype)
return bias_dropout_add(Z, self.out_bias, dropout_mask, Z_raw, prob=self.p_drop)
class TriangleAttentionEndingNode(nn.Module):
def __init__(self, d_pair, p_drop, c=32, n_head=4):
super(TriangleAttentionEndingNode, self).__init__()
self.d_pair = d_pair
self.c = c
self.n_head = n_head
self.p_drop = p_drop
self.layernorm1 = LayerNorm(d_pair)
_init_weights = torch.nn.init.normal_(torch.zeros([d_pair, n_head]),
std=1.0 / math.sqrt(d_pair))
self.linear_b_weights = nn.parameter.Parameter(data=_init_weights)
self.attention = SelfAttention(qkv_dim=d_pair,
c=c,
n_head=n_head,
out_dim=d_pair,
gating=True,
last_bias_fuse=True)
self.out_bias = nn.parameter.Parameter(data=torch.zeros((d_pair,)), requires_grad=True)
def forward(self, Z_raw):
Z = Z_raw.transpose(-2, -3)
Z = self.layernorm1(Z)
b = torch.einsum('bqkc,ch->bhqk', Z, self.linear_b_weights)
Z = self.attention(Z, b)
Z = Z.transpose(-2, -3)
dropout_mask = torch.ones_like(Z[:, :, 0:1, :]).to(Z.device).to(Z.dtype)
return bias_dropout_add(Z, self.out_bias, dropout_mask, Z_raw, prob=self.p_drop)
class PairStack(nn.Module):
def __init__(self, d_pair, p_drop=0.25):
super(PairStack, self).__init__()
self.TriangleMultiplicationOutgoing = TriangleMultiplicationOutgoing(d_pair, p_drop=p_drop)
self.TriangleMultiplicationIncoming = TriangleMultiplicationIncoming(d_pair, p_drop=p_drop)
self.TriangleAttentionStartingNode = TriangleAttentionStartingNode(d_pair, p_drop=p_drop)
self.TriangleAttentionEndingNode = TriangleAttentionEndingNode(d_pair, p_drop=p_drop)
self.PairTransition = Transition(d=d_pair)
def forward(self, pair):
pair = self.TriangleMultiplicationOutgoing(pair)
pair = self.TriangleMultiplicationIncoming(pair)
pair = self.TriangleAttentionStartingNode(pair)
pair = self.TriangleAttentionEndingNode(pair)
pair = self.PairTransition(pair)
return pair

View File

@ -0,0 +1,84 @@
# Copyright 2021 AlQuraishi Laboratory
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.utils.checkpoint
from typing import Any, Tuple, List, Callable, Optional
BLOCK_ARG = Any
BLOCK_ARGS = List[BLOCK_ARG]
def get_checkpoint_fn():
checkpoint = torch.utils.checkpoint.checkpoint
return checkpoint
@torch.jit.ignore
def checkpoint_blocks(
blocks: List[Callable],
args: BLOCK_ARGS,
blocks_per_ckpt: Optional[int],
) -> BLOCK_ARGS:
"""
Chunk a list of blocks and run each chunk with activation
checkpointing. We define a "block" as a callable whose only inputs are
the outputs of the previous block.
Implements Subsection 1.11.8
Args:
blocks:
List of blocks
args:
Tuple of arguments for the first block.
blocks_per_ckpt:
Size of each chunk. A higher value corresponds to fewer
checkpoints, and trades memory for speed. If None, no checkpointing
is performed.
Returns:
The output of the final block
"""
def wrap(a):
return (a,) if type(a) is not tuple else a
def exec(b, a):
for block in b:
a = wrap(block(*a))
return a
def chunker(s, e):
def exec_sliced(*a):
return exec(blocks[s:e], a)
return exec_sliced
# Avoids mishaps when the blocks take just one argument
args = wrap(args)
if blocks_per_ckpt is None:
return exec(blocks, args)
elif blocks_per_ckpt < 1 or blocks_per_ckpt > len(blocks):
raise ValueError("blocks_per_ckpt must be between 1 and len(blocks)")
checkpoint = get_checkpoint_fn()
for s in range(0, len(blocks), blocks_per_ckpt):
e = s + blocks_per_ckpt
args = checkpoint(chunker(s, e), *args)
args = wrap(args)
return args

View File

@ -0,0 +1,78 @@
# Copyright 2021 AlQuraishi Laboratory
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from functools import partialmethod
from typing import Union, List
class Dropout(nn.Module):
"""
Implementation of dropout with the ability to share the dropout mask
along a particular dimension.
If not in training mode, this module computes the identity function.
"""
def __init__(self, r: float, batch_dim: Union[int, List[int]]):
"""
Args:
r:
Dropout rate
batch_dim:
Dimension(s) along which the dropout mask is shared
"""
super(Dropout, self).__init__()
self.r = r
if type(batch_dim) == int:
batch_dim = [batch_dim]
self.batch_dim = batch_dim
self.dropout = nn.Dropout(self.r)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x:
Tensor to which dropout is applied. Can have any shape
compatible with self.batch_dim
"""
shape = list(x.shape)
if self.batch_dim is not None:
for bd in self.batch_dim:
shape[bd] = 1
mask = x.new_ones(shape)
mask = self.dropout(mask)
x *= mask
return x
class DropoutRowwise(Dropout):
"""
Convenience class for rowwise dropout as described in subsection
1.11.6.
"""
__init__ = partialmethod(Dropout.__init__, batch_dim=-3)
class DropoutColumnwise(Dropout):
"""
Convenience class for columnwise dropout as described in subsection
1.11.6.
"""
__init__ = partialmethod(Dropout.__init__, batch_dim=-2)

View File

@ -0,0 +1,431 @@
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
import torch.nn as nn
from typing import Tuple, Optional
from functools import partial
from .primitives import Linear, LayerNorm
from .dropout import DropoutRowwise, DropoutColumnwise
from .msa import (
MSARowAttentionWithPairBias,
MSAColumnAttention,
MSAColumnGlobalAttention,
)
from .outer_product_mean import OuterProductMean
from .pair_transition import PairTransition
from .triangular_attention import (
TriangleAttentionStartingNode,
TriangleAttentionEndingNode,
)
from .triangular_multiplicative_update import (
TriangleMultiplicationOutgoing,
TriangleMultiplicationIncoming,
)
from .checkpointing import checkpoint_blocks, get_checkpoint_fn
from .tensor_utils import chunk_layer
class MSATransition(nn.Module):
"""
Feed-forward network applied to MSA activations after attention.
Implements Algorithm 9
"""
def __init__(self, c_m, n):
"""
Args:
c_m:
MSA channel dimension
n:
Factor multiplied to c_m to obtain the hidden channel
dimension
"""
super(MSATransition, self).__init__()
self.c_m = c_m
self.n = n
self.layer_norm = LayerNorm(self.c_m)
self.linear_1 = Linear(self.c_m, self.n * self.c_m, init="relu")
self.relu = nn.ReLU()
self.linear_2 = Linear(self.n * self.c_m, self.c_m, init="final")
def _transition(self, m, mask):
m = self.linear_1(m)
m = self.relu(m)
m = self.linear_2(m) * mask
return m
@torch.jit.ignore
def _chunk(self,
m: torch.Tensor,
mask: torch.Tensor,
chunk_size: int,
) -> torch.Tensor:
return chunk_layer(
self._transition,
{"m": m, "mask": mask},
chunk_size=chunk_size,
no_batch_dims=len(m.shape[:-2]),
)
def forward(
self,
m: torch.Tensor,
mask: Optional[torch.Tensor] = None,
chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""
Args:
m:
[*, N_seq, N_res, C_m] MSA activation
mask:
[*, N_seq, N_res, C_m] MSA mask
Returns:
m:
[*, N_seq, N_res, C_m] MSA activation update
"""
# DISCREPANCY: DeepMind forgets to apply the MSA mask here.
if mask is None:
mask = m.new_ones(m.shape[:-1])
# [*, N_seq, N_res, 1]
mask = mask.unsqueeze(-1)
m = self.layer_norm(m)
if chunk_size is not None:
m = self._chunk(m, mask, chunk_size)
else:
m = self._transition(m, mask)
return m
class EvoformerBlockCore(nn.Module):
def __init__(
self,
c_m: int,
c_z: int,
c_hidden_opm: int,
c_hidden_mul: int,
c_hidden_pair_att: int,
no_heads_msa: int,
no_heads_pair: int,
transition_n: int,
pair_dropout: float,
inf: float,
eps: float,
_is_extra_msa_stack: bool = False,
is_multimer: bool = False,
):
super(EvoformerBlockCore, self).__init__()
self.is_multimer = is_multimer
self.msa_transition = MSATransition(
c_m=c_m,
n=transition_n,
)
self.outer_product_mean = OuterProductMean(
c_m,
c_z,
c_hidden_opm,
)
self.tri_mul_out = TriangleMultiplicationOutgoing(
c_z,
c_hidden_mul,
)
self.tri_mul_in = TriangleMultiplicationIncoming(
c_z,
c_hidden_mul,
)
self.tri_att_start = TriangleAttentionStartingNode(
c_z,
c_hidden_pair_att,
no_heads_pair,
inf=inf,
)
self.tri_att_end = TriangleAttentionEndingNode(
c_z,
c_hidden_pair_att,
no_heads_pair,
inf=inf,
)
self.pair_transition = PairTransition(
c_z,
transition_n,
)
self.ps_dropout_row_layer = DropoutRowwise(pair_dropout)
self.ps_dropout_col_layer = DropoutColumnwise(pair_dropout)
def forward(
self,
m: torch.Tensor,
z: torch.Tensor,
chunk_size: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# DeepMind doesn't mask these transitions in the source, so _mask_trans
# should be disabled to better approximate the exact activations of
# the original.
m = m + self.msa_transition(
m, chunk_size=chunk_size
)
z = z + self.outer_product_mean(
m, chunk_size=chunk_size
)
z = z + self.ps_dropout_row_layer(self.tri_mul_out(z))
z = z + self.ps_dropout_row_layer(self.tri_mul_in(z))
z = z + self.ps_dropout_row_layer(
self.tri_att_start(z, chunk_size=chunk_size)
)
z = z + self.ps_dropout_col_layer(
self.tri_att_end(z, chunk_size=chunk_size)
)
z = z + self.pair_transition(
z, chunk_size=chunk_size
)
return m, z
class EvoformerBlock(nn.Module):
def __init__(self,
c_m: int,
c_z: int,
c_hidden_msa_att: int,
c_hidden_opm: int,
c_hidden_mul: int,
c_hidden_pair_att: int,
no_heads_msa: int,
no_heads_pair: int,
transition_n: int,
msa_dropout: float,
pair_dropout: float,
inf: float,
eps: float,
is_multimer: bool,
):
super(EvoformerBlock, self).__init__()
self.msa_att_row = MSARowAttentionWithPairBias(
c_m=c_m,
c_z=c_z,
c_hidden=c_hidden_msa_att,
no_heads=no_heads_msa,
inf=inf,
)
self.msa_att_col = MSAColumnAttention(
c_m,
c_hidden_msa_att,
no_heads_msa,
inf=inf,
)
self.msa_dropout_layer = DropoutRowwise(msa_dropout)
self.core = EvoformerBlockCore(
c_m=c_m,
c_z=c_z,
c_hidden_opm=c_hidden_opm,
c_hidden_mul=c_hidden_mul,
c_hidden_pair_att=c_hidden_pair_att,
no_heads_msa=no_heads_msa,
no_heads_pair=no_heads_pair,
transition_n=transition_n,
pair_dropout=pair_dropout,
inf=inf,
eps=eps,
)
self.outer_product_mean = OuterProductMean(
c_m,
c_z,
c_hidden_opm,
)
self.is_multimer = is_multimer
def forward(self,
m: torch.Tensor,
z: torch.Tensor,
chunk_size: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
m = m + self.msa_dropout_layer(
self.msa_att_row(m, z=z, chunk_size=chunk_size)
)
m = m + self.msa_att_col(m, chunk_size=chunk_size)
m, z = self.core(
m,
z,
chunk_size=chunk_size,
)
return m, z
class EvoformerStack(nn.Module):
"""
Main Evoformer trunk.
Implements Algorithm 6.
"""
def __init__(
self,
c_m: int,
c_z: int,
c_hidden_msa_att: int,
c_hidden_opm: int,
c_hidden_mul: int,
c_hidden_pair_att: int,
c_s: int,
no_heads_msa: int,
no_heads_pair: int,
no_blocks: int,
transition_n: int,
msa_dropout: float,
pair_dropout: float,
blocks_per_ckpt: int,
inf: float,
eps: float,
clear_cache_between_blocks: bool = False,
is_multimer: bool = False,
**kwargs,
):
"""
Args:
c_m:
MSA channel dimension
c_z:
Pair channel dimension
c_hidden_msa_att:
Hidden dimension in MSA attention
c_hidden_opm:
Hidden dimension in outer product mean module
c_hidden_mul:
Hidden dimension in multiplicative updates
c_hidden_pair_att:
Hidden dimension in triangular attention
c_s:
Channel dimension of the output "single" embedding
no_heads_msa:
Number of heads used for MSA attention
no_heads_pair:
Number of heads used for pair attention
no_blocks:
Number of Evoformer blocks in the stack
transition_n:
Factor by which to multiply c_m to obtain the MSATransition
hidden dimension
msa_dropout:
Dropout rate for MSA activations
pair_dropout:
Dropout used for pair activations
blocks_per_ckpt:
Number of Evoformer blocks in each activation checkpoint
clear_cache_between_blocks:
Whether to clear CUDA's GPU memory cache between blocks of the
stack. Slows down each block but can reduce fragmentation
"""
super(EvoformerStack, self).__init__()
self.blocks_per_ckpt = blocks_per_ckpt
self.clear_cache_between_blocks = clear_cache_between_blocks
self.blocks = nn.ModuleList()
for _ in range(no_blocks):
block = EvoformerBlock(
c_m=c_m,
c_z=c_z,
c_hidden_msa_att=c_hidden_msa_att,
c_hidden_opm=c_hidden_opm,
c_hidden_mul=c_hidden_mul,
c_hidden_pair_att=c_hidden_pair_att,
no_heads_msa=no_heads_msa,
no_heads_pair=no_heads_pair,
transition_n=transition_n,
msa_dropout=msa_dropout,
pair_dropout=pair_dropout,
inf=inf,
eps=eps,
is_multimer=is_multimer,
)
self.blocks.append(block)
self.linear = Linear(c_m, c_s)
def forward(self,
m: torch.Tensor,
z: torch.Tensor,
msa_mask: torch.Tensor,
pair_mask: torch.Tensor,
chunk_size: int,
_mask_trans: bool = True,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""
Args:
m:
[*, N_seq, N_res, C_m] MSA embedding
z:
[*, N_res, N_res, C_z] pair embedding
msa_mask:
[*, N_seq, N_res] MSA mask
pair_mask:
[*, N_res, N_res] pair mask
Returns:
m:
[*, N_seq, N_res, C_m] MSA embedding
z:
[*, N_res, N_res, C_z] pair embedding
s:
[*, N_res, C_s] single embedding (or None if extra MSA stack)
"""
blocks = [
partial(
b,
msa_mask=msa_mask,
pair_mask=pair_mask,
chunk_size=chunk_size,
_mask_trans=_mask_trans,
)
for b in self.blocks
]
if(self.clear_cache_between_blocks):
def block_with_cache_clear(block, *args):
torch.cuda.empty_cache()
return block(*args)
blocks = [partial(block_with_cache_clear, b) for b in blocks]
m, z = checkpoint_blocks(
blocks,
args=(m, z),
blocks_per_ckpt=self.blocks_per_ckpt if self.training else None,
)
s = self.linear(m[..., 0, :, :])
return m, z, s

View File

@ -0,0 +1,331 @@
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
import torch.nn as nn
from typing import Optional, List, Tuple
from .primitives import (
Linear,
LayerNorm,
Attention,
GlobalAttention,
_attention_chunked_trainable,
)
from .checkpointing import get_checkpoint_fn
from .tensor_utils import (
chunk_layer,
permute_final_dims,
flatten_final_dims,
)
class MSAAttention(nn.Module):
def __init__(
self,
c_in,
c_hidden,
no_heads,
pair_bias=False,
c_z=None,
inf=1e9,
):
"""
Args:
c_in:
Input channel dimension
c_hidden:
Per-head hidden channel dimension
no_heads:
Number of attention heads
pair_bias:
Whether to use pair embedding bias
c_z:
Pair embedding channel dimension. Ignored unless pair_bias
is true
inf:
A large number to be used in computing the attention mask
"""
super(MSAAttention, self).__init__()
self.c_in = c_in
self.c_hidden = c_hidden
self.no_heads = no_heads
self.pair_bias = pair_bias
self.c_z = c_z
self.inf = inf
self.layer_norm_m = LayerNorm(self.c_in)
self.layer_norm_z = None
self.linear_z = None
if self.pair_bias:
self.layer_norm_z = LayerNorm(self.c_z)
self.linear_z = Linear(
self.c_z, self.no_heads, bias=False, init="normal"
)
self.mha = Attention(
self.c_in, self.c_in, self.c_in, self.c_hidden, self.no_heads
)
@torch.jit.ignore
def _chunk(self,
m: torch.Tensor,
biases: List[torch.Tensor],
chunk_size: int,
) -> torch.Tensor:
return chunk_layer(
self.mha,
{"q_x": m, "kv_x": m, "biases": biases},
chunk_size=chunk_size,
no_batch_dims=len(m.shape[:-2]),
)
def _prep_inputs(self,
m: torch.Tensor,
z: Optional[torch.Tensor],
mask: Optional[torch.Tensor]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# [*, N_seq, N_res, C_m]
m = self.layer_norm_m(m)
n_seq, n_res = m.shape[-3:-1]
if mask is None:
# [*, N_seq, N_res]
mask = m.new_ones(
m.shape[:-3] + (n_seq, n_res),
)
# [*, N_seq, 1, 1, N_res]
mask_bias = (self.inf * (mask - 1))[..., :, None, None, :]
# This step simply returns a larger view of the bias, and does not
# consume additional memory.
# [*, N_seq, no_heads, N_res, N_res]
#bias = bias.expand(
# ((-1,) * len(bias.shape[:-4])) + (-1, self.no_heads, n_res, -1)
#)
if (self.pair_bias and
z is not None and # For the
self.layer_norm_z is not None and # benefit of
self.linear_z is not None # TorchScript
):
# [*, N_res, N_res, C_z]
z = self.layer_norm_z(z)
# [*, N_res, N_res, no_heads]
z = self.linear_z(z)
# [*, 1, no_heads, N_res, N_res]
z = permute_final_dims(z, (2, 0, 1)).unsqueeze(-4)
return m, mask_bias, z
def forward(self,
m: torch.Tensor,
z: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
chunk_size: Optional[int] = None,
_chunk_logits: Optional[int] = None,
_checkpoint_chunks: Optional[bool] = None,
) -> torch.Tensor:
"""
Args:
m:
[*, N_seq, N_res, C_m] MSA embedding
z:
[*, N_res, N_res, C_z] pair embedding. Required only if
pair_bias is True
mask:
[*, N_seq, N_res] MSA mask
chunk_size:
Size of chunks into which the inputs are split along their
batch dimensions. A low value decreases memory overhead at the
cost of slower execution. Chunking is not performed by default.
"""
m, mask_bias, z = self._prep_inputs(m, z, mask)
biases = [mask_bias]
if(z is not None):
biases.append(z)
if chunk_size is not None:
m = self._chunk(m, biases, chunk_size)
else:
m = self.mha(
q_x=m,
kv_x=m,
biases=biases
)
return m
class MSARowAttentionWithPairBias(MSAAttention):
"""
Implements Algorithm 7.
"""
def __init__(self, c_m, c_z, c_hidden, no_heads, inf=1e9):
"""
Args:
c_m:
Input channel dimension
c_z:
Pair embedding channel dimension
c_hidden:
Per-head hidden channel dimension
no_heads:
Number of attention heads
inf:
Large number used to construct attention masks
"""
super(MSARowAttentionWithPairBias, self).__init__(
c_m,
c_hidden,
no_heads,
pair_bias=True,
c_z=c_z,
inf=inf,
)
class MSAColumnAttention(nn.Module):
"""
Implements Algorithm 8.
By rights, this should also be a subclass of MSAAttention. Alas,
most inheritance isn't supported by TorchScript.
"""
def __init__(self, c_m, c_hidden, no_heads, inf=1e9):
"""
Args:
c_m:
MSA channel dimension
c_hidden:
Per-head hidden channel dimension
no_heads:
Number of attention heads
inf:
Large number used to construct attention masks
"""
super(MSAColumnAttention, self).__init__()
self.c_m = c_m
self.c_hidden = c_hidden
self.no_heads = no_heads
self.inf = inf
self._msa_att = MSAAttention(
c_in=c_m,
c_hidden=c_hidden,
no_heads=no_heads,
pair_bias=False,
c_z=None,
inf=inf,
)
def forward(self,
m: torch.Tensor,
mask: Optional[torch.Tensor] = None,
chunk_size: Optional[int] = None
) -> torch.Tensor:
"""
Args:
m:
[*, N_seq, N_res, C_m] MSA embedding
mask:
[*, N_seq, N_res] MSA mask
chunk_size:
Size of chunks into which the inputs are split along their
batch dimensions. A low value decreases memory overhead at the
cost of slower execution. Chunking is not performed by default.
"""
# [*, N_res, N_seq, C_in]
m = m.transpose(-2, -3)
m = self._msa_att(m, chunk_size=chunk_size)
# [*, N_seq, N_res, C_in]
m = m.transpose(-2, -3)
return m
class MSAColumnGlobalAttention(nn.Module):
def __init__(
self, c_in, c_hidden, no_heads, inf=1e9, eps=1e-10,
):
super(MSAColumnGlobalAttention, self).__init__()
self.c_in = c_in
self.c_hidden = c_hidden
self.no_heads = no_heads
self.inf = inf
self.eps = eps
self.layer_norm_m = nn.LayerNorm(c_in)
self.global_attention = GlobalAttention(
c_in=c_in,
c_hidden=c_hidden,
no_heads=no_heads,
inf=inf,
eps=eps,
)
@torch.jit.ignore
def _chunk(self,
m: torch.Tensor,
chunk_size: int,
) -> torch.Tensor:
mha_input = {
"m": m,
}
return chunk_layer(
self.global_attention,
mha_input,
chunk_size=chunk_size,
no_batch_dims=len(m.shape[:-2]),
)
def forward(
self,
m: torch.Tensor,
chunk_size: Optional[int] = None,
) -> torch.Tensor:
n_seq, n_res, c_in = m.shape[-3:]
# [*, N_res, N_seq, C_in]
m = m.transpose(-2, -3)
# [*, N_res, N_seq, C_in]
m = self.layer_norm_m(m)
if chunk_size is not None:
m = self._chunk(m, chunk_size)
else:
m = self.global_attention(m=m)
# [*, N_seq, N_res, C_in]
m = m.transpose(-2, -3)
return m

View File

@ -0,0 +1,129 @@
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
from .primitives import Linear
from .tensor_utils import chunk_layer
class OuterProductMean(nn.Module):
"""
Implements Algorithm 10.
"""
def __init__(self, c_m, c_z, c_hidden, eps=1e-3):
"""
Args:
c_m:
MSA embedding channel dimension
c_z:
Pair embedding channel dimension
c_hidden:
Hidden channel dimension
"""
super(OuterProductMean, self).__init__()
self.c_m = c_m
self.c_z = c_z
self.c_hidden = c_hidden
self.eps = eps
self.layer_norm = nn.LayerNorm(c_m)
self.linear_1 = Linear(c_m, c_hidden)
self.linear_2 = Linear(c_m, c_hidden)
self.linear_out = Linear(c_hidden ** 2, c_z, init="final")
def _opm(self, a, b):
# [*, N_res, N_res, C, C]
outer = torch.einsum("...bac,...dae->...bdce", a, b)
# [*, N_res, N_res, C * C]
outer = outer.reshape(outer.shape[:-2] + (-1,))
# [*, N_res, N_res, C_z]
outer = self.linear_out(outer)
return outer
@torch.jit.ignore
def _chunk(self,
a: torch.Tensor,
b: torch.Tensor,
chunk_size: int
) -> torch.Tensor:
# Since the "batch dim" in this case is not a true batch dimension
# (in that the shape of the output depends on it), we need to
# iterate over it ourselves
a_reshape = a.reshape((-1,) + a.shape[-3:])
b_reshape = b.reshape((-1,) + b.shape[-3:])
out = []
for a_prime, b_prime in zip(a_reshape, b_reshape):
outer = chunk_layer(
partial(self._opm, b=b_prime),
{"a": a_prime},
chunk_size=chunk_size,
no_batch_dims=1,
)
out.append(outer)
outer = torch.stack(out, dim=0)
outer = outer.reshape(a.shape[:-3] + outer.shape[1:])
return outer
def forward(self,
m: torch.Tensor,
mask: Optional[torch.Tensor] = None,
chunk_size: Optional[int] = None
) -> torch.Tensor:
"""
Args:
m:
[*, N_seq, N_res, C_m] MSA embedding
mask:
[*, N_seq, N_res] MSA mask
Returns:
[*, N_res, N_res, C_z] pair embedding update
"""
if mask is None:
mask = m.new_ones(m.shape[:-1])
# [*, N_seq, N_res, C_m]
m = self.layer_norm(m)
# [*, N_seq, N_res, C]
mask = mask.unsqueeze(-1)
a = self.linear_1(m) * mask
b = self.linear_2(m) * mask
a = a.transpose(-2, -3)
b = b.transpose(-2, -3)
if chunk_size is not None:
outer = self._chunk(a, b, chunk_size)
else:
outer = self._opm(a, b)
# [*, N_res, N_res, 1]
norm = torch.einsum("...abc,...adc->...bdc", mask, mask)
# [*, N_res, N_res, C_z]
outer = outer / (self.eps + norm)
return outer

View File

@ -0,0 +1,99 @@
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
import torch.nn as nn
from .primitives import Linear, LayerNorm
from .tensor_utils import chunk_layer
class PairTransition(nn.Module):
"""
Implements Algorithm 15.
"""
def __init__(self, c_z, n):
"""
Args:
c_z:
Pair transition channel dimension
n:
Factor by which c_z is multiplied to obtain hidden channel
dimension
"""
super(PairTransition, self).__init__()
self.c_z = c_z
self.n = n
self.layer_norm = LayerNorm(self.c_z)
self.linear_1 = Linear(self.c_z, self.n * self.c_z, init="relu")
self.relu = nn.ReLU()
self.linear_2 = Linear(self.n * self.c_z, c_z, init="final")
def _transition(self, z, mask):
# [*, N_res, N_res, C_hidden]
z = self.linear_1(z)
z = self.relu(z)
# [*, N_res, N_res, C_z]
z = self.linear_2(z) * mask
return z
@torch.jit.ignore
def _chunk(self,
z: torch.Tensor,
mask: torch.Tensor,
chunk_size: int,
) -> torch.Tensor:
return chunk_layer(
self._transition,
{"z": z, "mask": mask},
chunk_size=chunk_size,
no_batch_dims=len(z.shape[:-2]),
)
def forward(self,
z: torch.Tensor,
mask: Optional[torch.Tensor] = None,
chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""
Args:
z:
[*, N_res, N_res, C_z] pair embedding
Returns:
[*, N_res, N_res, C_z] pair embedding update
"""
# DISCREPANCY: DeepMind forgets to apply the mask in this module.
if mask is None:
mask = z.new_ones(z.shape[:-1])
# [*, N_res, N_res, 1]
mask = mask.unsqueeze(-1)
# [*, N_res, N_res, C_z]
z = self.layer_norm(z)
if chunk_size is not None:
z = self._chunk(z, mask, chunk_size)
else:
z = self._transition(z=z, mask=mask)
return z

View File

@ -0,0 +1,529 @@
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import math
from typing import Optional, Callable, List, Tuple, Sequence
import numpy as np
import torch
import torch.nn as nn
from .checkpointing import get_checkpoint_fn
from .tensor_utils import (
permute_final_dims,
flatten_final_dims,
_chunk_slice,
)
def _prod(nums):
out = 1
for n in nums:
out = out * n
return out
def _calculate_fan(linear_weight_shape, fan="fan_in"):
fan_out, fan_in = linear_weight_shape
if fan == "fan_in":
f = fan_in
elif fan == "fan_out":
f = fan_out
elif fan == "fan_avg":
f = (fan_in + fan_out) / 2
else:
raise ValueError("Invalid fan option")
return f
def glorot_uniform_init_(weights):
nn.init.xavier_uniform_(weights, gain=1)
def final_init_(weights):
with torch.no_grad():
weights.fill_(0.0)
def gating_init_(weights):
with torch.no_grad():
weights.fill_(0.0)
def normal_init_(weights):
torch.nn.init.kaiming_normal_(weights, nonlinearity="linear")
def ipa_point_weights_init_(weights):
with torch.no_grad():
softplus_inverse_1 = 0.541324854612918
weights.fill_(softplus_inverse_1)
class Linear(nn.Linear):
"""
A Linear layer with built-in nonstandard initializations. Called just
like torch.nn.Linear.
Implements the initializers in 1.11.4, plus some additional ones found
in the code.
"""
def __init__(
self,
in_dim: int,
out_dim: int,
bias: bool = True,
init: str = "default",
init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None,
):
"""
Args:
in_dim:
The final dimension of inputs to the layer
out_dim:
The final dimension of layer outputs
bias:
Whether to learn an additive bias. True by default
init:
The initializer to use. Choose from:
"default": LeCun fan-in truncated normal initialization
"relu": He initialization w/ truncated normal distribution
"glorot": Fan-average Glorot uniform initialization
"gating": Weights=0, Bias=1
"normal": Normal initialization with std=1/sqrt(fan_in)
"final": Weights=0, Bias=0
Overridden by init_fn if the latter is not None.
init_fn:
A custom initializer taking weight and bias as inputs.
Overrides init if not None.
"""
super(Linear, self).__init__(in_dim, out_dim, bias=bias)
if bias:
with torch.no_grad():
self.bias.fill_(0)
if init_fn is not None:
init_fn(self.weight, self.bias)
else:
if init == "default":
normal_init_(self.weight)
elif init == "relu":
normal_init_(self.weight)
elif init == "glorot":
glorot_uniform_init_(self.weight)
elif init == "gating":
gating_init_(self.weight)
if bias:
with torch.no_grad():
self.bias.fill_(1.0)
elif init == "normal":
normal_init_(self.weight)
elif init == "final":
final_init_(self.weight)
else:
raise ValueError("Invalid init string.")
class LayerNorm(nn.Module):
def __init__(self, c_in, eps=1e-5):
super(LayerNorm, self).__init__()
self.c_in = (c_in,)
self.eps = eps
self.weight = nn.Parameter(torch.ones(c_in))
self.bias = nn.Parameter(torch.zeros(c_in))
def forward(self, x):
out = nn.functional.layer_norm(
x,
self.c_in,
self.weight,
self.bias,
self.eps,
)
return out
@torch.jit.ignore
def softmax(t: torch.Tensor, dim: int = -1) -> torch.Tensor:
"""
Softmax, but without automatic casting to fp32 when the input is of
type bfloat16
"""
s = torch.nn.functional.softmax(t, dim=dim)
return s
#@torch.jit.script
def _attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor,
biases: List[torch.Tensor]) -> torch.Tensor:
# [*, H, Q, C_hidden]
query = permute_final_dims(query, (1, 0, 2))
# [*, H, C_hidden, K]
key = permute_final_dims(key, (1, 2, 0))
# [*, H, V, C_hidden]
value = permute_final_dims(value, (1, 0, 2))
# [*, H, Q, K]
a = torch.matmul(query, key)
for b in biases:
a += b
a = softmax(a, -1)
# [*, H, Q, C_hidden]
a = torch.matmul(a, value)
# [*, Q, H, C_hidden]
a = a.transpose(-2, -3)
return a
@torch.jit.ignore
def _attention_chunked_trainable(
query,
key,
value,
biases,
chunk_size,
chunk_dim,
checkpoint,
):
if (checkpoint and len(biases) > 2):
raise ValueError("Checkpointed version permits only permits two bias terms")
def _checkpointable_attention(q, k, v, b1, b2):
bs = [b for b in [b1, b2] if b is not None]
return _attention(q, k, v, bs)
o_chunks = []
checkpoint_fn = get_checkpoint_fn()
count = query.shape[chunk_dim]
for start in range(0, count, chunk_size):
end = start + chunk_size
idx = [slice(None)] * len(query.shape)
idx[chunk_dim] = slice(start, end)
idx_tup = tuple(idx)
q_chunk = query[idx_tup]
k_chunk = key[idx_tup]
v_chunk = value[idx_tup]
def _slice_bias(b):
idx[chunk_dim] = (slice(start, end) if b.shape[chunk_dim] != 1 else slice(None))
return b[tuple(idx)]
if (checkpoint):
bias_1_chunk, bias_2_chunk = [
_slice_bias(b) if b is not None else None for b in (biases + [None, None])[:2]
]
o_chunk = checkpoint_fn(_checkpointable_attention, q_chunk, k_chunk, v_chunk,
bias_1_chunk, bias_2_chunk)
else:
bias_chunks = [_slice_bias(b) for b in biases]
o_chunk = _attention(q_chunk, k_chunk, v_chunk, bias_chunks)
o_chunks.append(o_chunk)
o = torch.cat(o_chunks, dim=chunk_dim)
return o
class Attention(nn.Module):
"""
Standard multi-head attention using AlphaFold's default layer
initialization. Allows multiple bias vectors.
"""
def __init__(
self,
c_q: int,
c_k: int,
c_v: int,
c_hidden: int,
no_heads: int,
gating: bool = True,
):
"""
Args:
c_q:
Input dimension of query data
c_k:
Input dimension of key data
c_v:
Input dimension of value data
c_hidden:
Per-head hidden dimension
no_heads:
Number of attention heads
gating:
Whether the output should be gated using query data
"""
super(Attention, self).__init__()
self.c_q = c_q
self.c_k = c_k
self.c_v = c_v
self.c_hidden = c_hidden
self.no_heads = no_heads
self.gating = gating
# DISCREPANCY: c_hidden is not the per-head channel dimension, as
# stated in the supplement, but the overall channel dimension.
self.linear_q = Linear(self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot")
self.linear_k = Linear(self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot")
self.linear_v = Linear(self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot")
self.linear_o = Linear(self.c_hidden * self.no_heads, self.c_q, init="final")
self.linear_g = None
if self.gating:
self.linear_g = Linear(self.c_q, self.c_hidden * self.no_heads, init="gating")
self.sigmoid = nn.Sigmoid()
def _prep_qkv(self, q_x: torch.Tensor,
kv_x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# [*, Q/K/V, H * C_hidden]
q = self.linear_q(q_x)
k = self.linear_k(kv_x)
v = self.linear_v(kv_x)
# [*, Q/K, H, C_hidden]
q = q.view(q.shape[:-1] + (self.no_heads, -1))
k = k.view(k.shape[:-1] + (self.no_heads, -1))
v = v.view(v.shape[:-1] + (self.no_heads, -1))
q /= math.sqrt(self.c_hidden)
return q, k, v
def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor) -> torch.Tensor:
if (self.linear_g is not None):
g = self.sigmoid(self.linear_g(q_x))
# [*, Q, H, C_hidden]
g = g.view(g.shape[:-1] + (self.no_heads, -1))
o = o * g
# [*, Q, H * C_hidden]
o = flatten_final_dims(o, 2)
# [*, Q, C_q]
o = self.linear_o(o)
return o
def forward(
self,
q_x: torch.Tensor,
kv_x: torch.Tensor,
biases: Optional[List[torch.Tensor]] = None,
use_lma: bool = False,
q_chunk_size: Optional[int] = None,
kv_chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""
Args:
q_x:
[*, Q, C_q] query data
kv_x:
[*, K, C_k] key data
biases:
List of biases that broadcast to [*, H, Q, K]
use_lma:
Whether to use low-memory attention
q_chunk_size:
Query chunk size (for LMA)
kv_chunk_size:
Key/Value chunk size (for LMA)
Returns
[*, Q, C_q] attention update
"""
if (biases is None):
biases = []
if (use_lma and (q_chunk_size is None or kv_chunk_size is None)):
raise ValueError("If use_lma is specified, q_chunk_size and kv_chunk_size must "
"be provided")
q, k, v = self._prep_qkv(q_x, kv_x)
if (use_lma):
biases = [b.expand(b.shape[:-2] + (q_x.shape[-2],) + (kv_x.shape[-2],)) for b in biases]
o = _lma(q, k, v, biases, q_chunk_size, kv_chunk_size)
else:
o = _attention(q, k, v, biases)
o = self._wrap_up(o, q_x)
return o
class GlobalAttention(nn.Module):
def __init__(self, c_in, c_hidden, no_heads, inf, eps):
super(GlobalAttention, self).__init__()
self.c_in = c_in
self.c_hidden = c_hidden
self.no_heads = no_heads
self.inf = inf
self.eps = eps
self.linear_q = Linear(c_in, c_hidden * no_heads, bias=False, init="glorot")
self.linear_k = Linear(
c_in,
c_hidden,
bias=False,
init="glorot",
)
self.linear_v = Linear(
c_in,
c_hidden,
bias=False,
init="glorot",
)
self.linear_g = Linear(c_in, c_hidden * no_heads, init="gating")
self.linear_o = Linear(c_hidden * no_heads, c_in, init="final")
self.sigmoid = nn.Sigmoid()
def forward(self, m: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
# [*, N_res, C_in]
q = torch.sum(m * mask.unsqueeze(-1),
dim=-2) / (torch.sum(mask, dim=-1)[..., None] + self.eps)
# [*, N_res, H * C_hidden]
q = self.linear_q(q)
q *= (self.c_hidden**(-0.5))
# [*, N_res, H, C_hidden]
q = q.view(q.shape[:-1] + (self.no_heads, -1))
# [*, N_res, N_seq, C_hidden]
k = self.linear_k(m)
v = self.linear_v(m)
# [*, N_res, H, N_seq]
a = torch.matmul(
q,
k.transpose(-1, -2), # [*, N_res, C_hidden, N_seq]
)
bias = (self.inf * (mask - 1))[..., :, None, :]
a += bias
a = softmax(a)
# [*, N_res, H, C_hidden]
o = torch.matmul(
a,
v,
)
# [*, N_res, N_seq, C_hidden]
g = self.sigmoid(self.linear_g(m))
# [*, N_res, N_seq, H, C_hidden]
g = g.view(g.shape[:-1] + (self.no_heads, -1))
# [*, N_res, N_seq, H, C_hidden]
o = o.unsqueeze(-3) * g
# [*, N_res, N_seq, H * C_hidden]
o = o.reshape(o.shape[:-2] + (-1,))
# [*, N_res, N_seq, C_in]
m = self.linear_o(o)
return m
def _lma(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
biases: List[torch.Tensor],
q_chunk_size: int,
kv_chunk_size: int,
):
no_q, no_kv = q.shape[-3], k.shape[-3]
# [*, Q, H, C_hidden]
o = q.new_zeros(q.shape)
for q_s in range(0, no_q, q_chunk_size):
q_chunk = q[..., q_s:q_s + q_chunk_size, :, :]
large_bias_chunks = [b[..., q_s:q_s + q_chunk_size, :] for b in biases]
maxes = []
weights = []
values = []
for kv_s in range(0, no_kv, kv_chunk_size):
k_chunk = k[..., kv_s:kv_s + kv_chunk_size, :, :]
v_chunk = v[..., kv_s:kv_s + kv_chunk_size, :, :]
small_bias_chunks = [b[..., kv_s:kv_s + kv_chunk_size] for b in large_bias_chunks]
a = torch.einsum(
"...qhd,...khd->...hqk",
q_chunk,
k_chunk,
)
for b in small_bias_chunks:
a += b
a = a.transpose(-2, -3)
max_a = torch.max(a, dim=-1, keepdim=True)[0]
exp_a = torch.exp(a - max_a)
exp_v = torch.einsum("...vhf,...qhv->...qhf", v_chunk, exp_a)
maxes.append(max_a.detach().squeeze(-1))
weights.append(torch.sum(exp_a, dim=-1))
values.append(exp_v)
chunk_max = torch.stack(maxes, dim=-3)
chunk_weights = torch.stack(weights, dim=-3)
chunk_values = torch.stack(values, dim=-4)
global_max = torch.max(chunk_max, dim=-3, keepdim=True)[0]
max_diffs = torch.exp(chunk_max - global_max)
chunk_values *= max_diffs.unsqueeze(-1)
chunk_weights *= max_diffs
all_values = torch.sum(chunk_values, dim=-4)
all_weights = torch.sum(chunk_weights.unsqueeze(-1), dim=-4)
q_chunk_out = all_values / all_weights
o[..., q_s:q_s + q_chunk_size, :, :] = q_chunk_out
return o

View File

@ -0,0 +1,408 @@
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import torch
import torch.nn as nn
from typing import Tuple, List, Callable, Any, Dict, Sequence, Optional
def permute_final_dims(tensor: torch.Tensor, inds: List[int]):
zero_index = -1 * len(inds)
first_inds = list(range(len(tensor.shape[:zero_index])))
return tensor.permute(first_inds + [zero_index + i for i in inds])
def flatten_final_dims(t: torch.Tensor, no_dims: int):
return t.reshape(t.shape[:-no_dims] + (-1,))
def masked_mean(mask, value, dim, eps=1e-4):
mask = mask.expand(*value.shape)
return torch.sum(mask * value, dim=dim) / (eps + torch.sum(mask, dim=dim))
def pts_to_distogram(pts, min_bin=2.3125, max_bin=21.6875, no_bins=64):
boundaries = torch.linspace(
min_bin, max_bin, no_bins - 1, device=pts.device
)
dists = torch.sqrt(
torch.sum((pts.unsqueeze(-2) - pts.unsqueeze(-3)) ** 2, dim=-1)
)
return torch.bucketize(dists, boundaries)
def dict_multimap(fn, dicts):
first = dicts[0]
new_dict = {}
for k, v in first.items():
all_v = [d[k] for d in dicts]
if type(v) is dict:
new_dict[k] = dict_multimap(fn, all_v)
else:
new_dict[k] = fn(all_v)
return new_dict
def one_hot(x, v_bins):
reshaped_bins = v_bins.view(((1,) * len(x.shape)) + (len(v_bins),))
diffs = x[..., None] - reshaped_bins
am = torch.argmin(torch.abs(diffs), dim=-1)
return nn.functional.one_hot(am, num_classes=len(v_bins)).float()
def batched_gather(data, inds, dim=0, no_batch_dims=0):
ranges = []
for i, s in enumerate(data.shape[:no_batch_dims]):
r = torch.arange(s)
r = r.view(*(*((1,) * i), -1, *((1,) * (len(inds.shape) - i - 1))))
ranges.append(r)
remaining_dims = [
slice(None) for _ in range(len(data.shape) - no_batch_dims)
]
remaining_dims[dim - no_batch_dims if dim >= 0 else dim] = inds
ranges.extend(remaining_dims)
return data[ranges]
# With tree_map, a poor man's JAX tree_map
def dict_map(fn, dic, leaf_type):
new_dict = {}
for k, v in dic.items():
if type(v) is dict:
new_dict[k] = dict_map(fn, v, leaf_type)
else:
new_dict[k] = tree_map(fn, v, leaf_type)
return new_dict
def tree_map(fn, tree, leaf_type):
if isinstance(tree, dict):
return dict_map(fn, tree, leaf_type)
elif isinstance(tree, list):
return [tree_map(fn, x, leaf_type) for x in tree]
elif isinstance(tree, tuple):
return tuple([tree_map(fn, x, leaf_type) for x in tree])
elif isinstance(tree, leaf_type):
return fn(tree)
else:
print(type(tree))
raise ValueError("Not supported")
tensor_tree_map = partial(tree_map, leaf_type=torch.Tensor)
def _fetch_dims(tree):
shapes = []
tree_type = type(tree)
if tree_type is dict:
for v in tree.values():
shapes.extend(_fetch_dims(v))
elif tree_type is list or tree_type is tuple:
for t in tree:
shapes.extend(_fetch_dims(t))
elif tree_type is torch.Tensor:
shapes.append(tree.shape)
else:
raise ValueError("Not supported")
return shapes
@torch.jit.ignore
def _flat_idx_to_idx(
flat_idx: int,
dims: Tuple[int],
) -> Tuple[int]:
idx = []
for d in reversed(dims):
idx.append(flat_idx % d)
flat_idx = flat_idx // d
return tuple(reversed(idx))
@torch.jit.ignore
def _get_minimal_slice_set(
start: Sequence[int],
end: Sequence[int],
dims: int,
start_edges: Optional[Sequence[bool]] = None,
end_edges: Optional[Sequence[bool]] = None,
) -> Sequence[Tuple[int]]:
"""
Produces an ordered sequence of tensor slices that, when used in
sequence on a tensor with shape dims, yields tensors that contain every
leaf in the contiguous range [start, end]. Care is taken to yield a
short sequence of slices, and perhaps even the shortest possible (I'm
pretty sure it's the latter).
end is INCLUSIVE.
"""
# start_edges and end_edges both indicate whether, starting from any given
# dimension, the start/end index is at the top/bottom edge of the
# corresponding tensor, modeled as a tree
def reduce_edge_list(ll):
tally = 1
for i in range(len(ll)):
reversed_idx = -1 * (i + 1)
ll[reversed_idx] *= tally
tally = ll[reversed_idx]
if(start_edges is None):
start_edges = [s == 0 for s in start]
reduce_edge_list(start_edges)
if(end_edges is None):
end_edges = [e == (d - 1) for e,d in zip(end, dims)]
reduce_edge_list(end_edges)
# Base cases. Either start/end are empty and we're done, or the final,
# one-dimensional tensor can be simply sliced
if(len(start) == 0):
return [tuple()]
elif(len(start) == 1):
return [(slice(start[0], end[0] + 1),)]
slices = []
path = []
# Dimensions common to start and end can be selected directly
for s,e in zip(start, end):
if(s == e):
path.append(slice(s, s + 1))
else:
break
path = tuple(path)
divergence_idx = len(path)
# start == end, and we're done
if(divergence_idx == len(dims)):
return [tuple(path)]
def upper():
sdi = start[divergence_idx]
return [
path + (slice(sdi, sdi + 1),) + s for s in
_get_minimal_slice_set(
start[divergence_idx + 1:],
[d - 1 for d in dims[divergence_idx + 1:]],
dims[divergence_idx + 1:],
start_edges=start_edges[divergence_idx + 1:],
end_edges=[1 for _ in end_edges[divergence_idx + 1:]]
)
]
def lower():
edi = end[divergence_idx]
return [
path + (slice(edi, edi + 1),) + s for s in
_get_minimal_slice_set(
[0 for _ in start[divergence_idx + 1:]],
end[divergence_idx + 1:],
dims[divergence_idx + 1:],
start_edges=[1 for _ in start_edges[divergence_idx + 1:]],
end_edges=end_edges[divergence_idx + 1:],
)
]
# If both start and end are at the edges of the subtree rooted at
# divergence_idx, we can just select the whole subtree at once
if(start_edges[divergence_idx] and end_edges[divergence_idx]):
slices.append(
path + (slice(start[divergence_idx], end[divergence_idx] + 1),)
)
# If just start is at the edge, we can grab almost all of the subtree,
# treating only the ragged bottom edge as an edge case
elif(start_edges[divergence_idx]):
slices.append(
path + (slice(start[divergence_idx], end[divergence_idx]),)
)
slices.extend(lower())
# Analogous to the previous case, but the top is ragged this time
elif(end_edges[divergence_idx]):
slices.extend(upper())
slices.append(
path + (slice(start[divergence_idx] + 1, end[divergence_idx] + 1),)
)
# If both sides of the range are ragged, we need to handle both sides
# separately. If there's contiguous meat in between them, we can index it
# in one big chunk
else:
slices.extend(upper())
middle_ground = end[divergence_idx] - start[divergence_idx]
if(middle_ground > 1):
slices.append(
path + (slice(start[divergence_idx] + 1, end[divergence_idx]),)
)
slices.extend(lower())
return [tuple(s) for s in slices]
@torch.jit.ignore
def _chunk_slice(
t: torch.Tensor,
flat_start: int,
flat_end: int,
no_batch_dims: int,
) -> torch.Tensor:
"""
Equivalent to
t.reshape((-1,) + t.shape[no_batch_dims:])[flat_start:flat_end]
but without the need for the initial reshape call, which can be
memory-intensive in certain situations. The only reshape operations
in this function are performed on sub-tensors that scale with
(flat_end - flat_start), the chunk size.
"""
batch_dims = t.shape[:no_batch_dims]
start_idx = list(_flat_idx_to_idx(flat_start, batch_dims))
# _get_minimal_slice_set is inclusive
end_idx = list(_flat_idx_to_idx(flat_end - 1, batch_dims))
# Get an ordered list of slices to perform
slices = _get_minimal_slice_set(
start_idx,
end_idx,
batch_dims,
)
sliced_tensors = [t[s] for s in slices]
return torch.cat(
[s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]
)
def chunk_layer(
layer: Callable,
inputs: Dict[str, Any],
chunk_size: int,
no_batch_dims: int,
low_mem: bool = False,
) -> Any:
"""
Implements the "chunking" procedure described in section 1.11.8.
Layer outputs and inputs are assumed to be simple "pytrees,"
consisting only of (arbitrarily nested) lists, tuples, and dicts with
torch.Tensor leaves.
Args:
layer:
The layer to be applied chunk-wise
inputs:
A (non-nested) dictionary of keyworded inputs. All leaves must
be tensors and must share the same batch dimensions.
chunk_size:
The number of sub-batches per chunk. If multiple batch
dimensions are specified, a "sub-batch" is defined as a single
indexing of all batch dimensions simultaneously (s.t. the
number of sub-batches is the product of the batch dimensions).
no_batch_dims:
How many of the initial dimensions of each input tensor can
be considered batch dimensions.
low_mem:
Avoids flattening potentially large input tensors. Unnecessary
in most cases, and is ever so slightly slower than the default
setting.
Returns:
The reassembled output of the layer on the inputs.
"""
if not (len(inputs) > 0):
raise ValueError("Must provide at least one input")
initial_dims = [shape[:no_batch_dims] for shape in _fetch_dims(inputs)]
orig_batch_dims = tuple([max(s) for s in zip(*initial_dims)])
def _prep_inputs(t):
# TODO: make this more memory efficient. This sucks
if(not low_mem):
if not sum(t.shape[:no_batch_dims]) == no_batch_dims:
t = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
t = t.reshape(-1, *t.shape[no_batch_dims:])
else:
t = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
return t
prepped_inputs = tensor_tree_map(_prep_inputs, inputs)
flat_batch_dim = 1
for d in orig_batch_dims:
flat_batch_dim *= d
no_chunks = flat_batch_dim // chunk_size + (
flat_batch_dim % chunk_size != 0
)
i = 0
out = None
for _ in range(no_chunks):
# Chunk the input
if(not low_mem):
select_chunk = (
lambda t: t[i : i + chunk_size] if t.shape[0] != 1 else t
)
else:
select_chunk = (
partial(
_chunk_slice,
flat_start=i,
flat_end=min(flat_batch_dim, i + chunk_size),
no_batch_dims=len(orig_batch_dims)
)
)
chunks = tensor_tree_map(select_chunk, prepped_inputs)
# Run the layer on the chunk
output_chunk = layer(**chunks)
# Allocate space for the output
if out is None:
allocate = lambda t: t.new_zeros((flat_batch_dim,) + t.shape[1:])
out = tensor_tree_map(allocate, output_chunk)
# Put the chunk in its pre-allocated space
out_type = type(output_chunk)
if out_type is dict:
def assign(d1, d2):
for k, v in d1.items():
if type(v) is dict:
assign(v, d2[k])
else:
v[i : i + chunk_size] = d2[k]
assign(out, output_chunk)
elif out_type is tuple:
for x1, x2 in zip(out, output_chunk):
x1[i : i + chunk_size] = x2
elif out_type is torch.Tensor:
out[i : i + chunk_size] = output_chunk
else:
raise ValueError("Not supported")
i += chunk_size
reshape = lambda t: t.view(orig_batch_dims + t.shape[1:])
out = tensor_tree_map(reshape, out)
return out

View File

@ -0,0 +1,139 @@
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partialmethod, partial
import math
from typing import Optional, List
import torch
import torch.nn as nn
from .primitives import Linear, LayerNorm, Attention
from .tensor_utils import (
chunk_layer,
permute_final_dims,
flatten_final_dims,
)
class TriangleAttention(nn.Module):
def __init__(
self, c_in, c_hidden, no_heads, starting, inf=1e9
):
"""
Args:
c_in:
Input channel dimension
c_hidden:
Overall hidden channel dimension (not per-head)
no_heads:
Number of attention heads
"""
super(TriangleAttention, self).__init__()
self.c_in = c_in
self.c_hidden = c_hidden
self.no_heads = no_heads
self.starting = starting
self.inf = inf
self.layer_norm = LayerNorm(self.c_in)
self.linear = Linear(c_in, self.no_heads, bias=False, init="normal")
self.mha = Attention(
self.c_in, self.c_in, self.c_in, self.c_hidden, self.no_heads
)
@torch.jit.ignore
def _chunk(self,
x: torch.Tensor,
biases: List[torch.Tensor],
chunk_size: int,
) -> torch.Tensor:
mha_inputs = {
"q_x": x,
"kv_x": x,
"biases": biases,
}
return chunk_layer(
partial(self.mha),
mha_inputs,
chunk_size=chunk_size,
no_batch_dims=len(x.shape[:-2]),
)
def forward(self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
chunk_size: Optional[int] = None
) -> torch.Tensor:
"""
Args:
x:
[*, I, J, C_in] input tensor (e.g. the pair representation)
Returns:
[*, I, J, C_in] output tensor
"""
if mask is None:
# [*, I, J]
mask = x.new_ones(
x.shape[:-1],
)
# Shape annotations assume self.starting. Else, I and J are flipped
if not self.starting:
x = x.transpose(-2, -3)
mask = mask.transpose(-1, -2)
# [*, I, J, C_in]
x = self.layer_norm(x)
# [*, I, 1, 1, J]
mask_bias = (self.inf * (mask - 1))[..., :, None, None, :]
# [*, H, I, J]
triangle_bias = permute_final_dims(self.linear(x), (2, 0, 1))
# [*, 1, H, I, J]
triangle_bias = triangle_bias.unsqueeze(-4)
biases = [mask_bias, triangle_bias]
if chunk_size is not None:
x = self._chunk(x, biases, chunk_size)
else:
x = self.mha(q_x=x, kv_x=x, biases=biases)
if not self.starting:
x = x.transpose(-2, -3)
return x
class TriangleAttentionStartingNode(TriangleAttention):
"""
Implements Algorithm 13.
"""
__init__ = partialmethod(TriangleAttention.__init__, starting=True)
class TriangleAttentionEndingNode(TriangleAttention):
"""
Implements Algorithm 14.
"""
__init__ = partialmethod(TriangleAttention.__init__, starting=False)

View File

@ -0,0 +1,127 @@
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partialmethod
from typing import Optional
import torch
import torch.nn as nn
from .primitives import Linear, LayerNorm
from .tensor_utils import permute_final_dims
class TriangleMultiplicativeUpdate(nn.Module):
"""
Implements Algorithms 11 and 12.
"""
def __init__(self, c_z, c_hidden, _outgoing=True):
"""
Args:
c_z:
Input channel dimension
c:
Hidden channel dimension
"""
super(TriangleMultiplicativeUpdate, self).__init__()
self.c_z = c_z
self.c_hidden = c_hidden
self._outgoing = _outgoing
self.linear_a_p = Linear(self.c_z, self.c_hidden)
self.linear_a_g = Linear(self.c_z, self.c_hidden, init="gating")
self.linear_b_p = Linear(self.c_z, self.c_hidden)
self.linear_b_g = Linear(self.c_z, self.c_hidden, init="gating")
self.linear_g = Linear(self.c_z, self.c_z, init="gating")
self.linear_z = Linear(self.c_hidden, self.c_z, init="final")
self.layer_norm_in = LayerNorm(self.c_z)
self.layer_norm_out = LayerNorm(self.c_hidden)
self.sigmoid = nn.Sigmoid()
def _combine_projections(self,
a: torch.Tensor,
b: torch.Tensor,
) -> torch.Tensor:
raise NotImplementedError("This method needs to be overridden")
def forward(self,
z: torch.Tensor,
mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""
Args:
x:
[*, N_res, N_res, C_z] input tensor
mask:
[*, N_res, N_res] input mask
Returns:
[*, N_res, N_res, C_z] output tensor
"""
if mask is None:
mask = z.new_ones(z.shape[:-1])
mask = mask.unsqueeze(-1)
z = self.layer_norm_in(z)
a = self.linear_a_p(z) * self.sigmoid(self.linear_a_g(z))
a = a * mask
b = self.linear_b_p(z) * self.sigmoid(self.linear_b_g(z))
b = b * mask
x = self._combine_projections(a, b)
x = self.layer_norm_out(x)
x = self.linear_z(x)
g = self.sigmoid(self.linear_g(z))
z = x * g
return z
class TriangleMultiplicationOutgoing(TriangleMultiplicativeUpdate):
"""
Implements Algorithm 11.
"""
def _combine_projections(self,
a: torch.Tensor, # [*, N_i, N_k, C]
b: torch.Tensor, # [*, N_j, N_k, C]
):
# [*, C, N_i, N_j]
p = torch.matmul(
permute_final_dims(a, (2, 0, 1)),
permute_final_dims(b, (2, 1, 0)),
)
# [*, N_i, N_j, C]
return permute_final_dims(p, (1, 2, 0))
class TriangleMultiplicationIncoming(TriangleMultiplicativeUpdate):
"""
Implements Algorithm 12.
"""
def _combine_projections(self,
a: torch.Tensor, # [*, N_k, N_i, C]
b: torch.Tensor, # [*, N_k, N_j, C]
):
# [*, C, N_i, N_j]
p = torch.matmul(
permute_final_dims(a, (2, 1, 0)),
permute_final_dims(b, (2, 0, 1)),
)
# [*, N_i, N_j, C]
return permute_final_dims(p, (1, 2, 0))

View File

@ -0,0 +1,113 @@
from functools import partial
import pytest
import torch
import torch.fx
import torch.multiprocessing as mp
import colossalai
from colossalai.core import global_context as gpc
from colossalai.fx import ColoTracer
from colossalai.fx._compatibility import is_compatible_with_meta
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.utils import free_port
from tests.test_autochunk.evoformer.evoformer import evoformer_base
if CODEGEN_AVAILABLE and is_compatible_with_meta():
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.fx.profiler import MetaTensor
def _test_fwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair):
# for memory test
# torch.cuda.reset_peak_memory_stats()
# now_mem = torch.cuda.memory_allocated() / 1024**2
# with torch.no_grad():
# node1 = node.clone()
# pair1 = pair.clone()
# gm(node1, pair1)
# new_now_mem = torch.cuda.memory_allocated() / 1024**2
# new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
# print(
# "autochunk now mem:%.2f max mem:%.2f"
# % (new_now_mem - now_mem, new_max_mem - now_mem)
# )
# test forward
with torch.no_grad():
non_fx_out = model(node, pair)
fx_out = gm(node, pair)
assert torch.allclose(non_fx_out[0], fx_out[0],
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(non_fx_out[0] - fx_out[0]))
assert torch.allclose(non_fx_out[1], fx_out[1],
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(non_fx_out[1] - fx_out[1]))
def _test_autochunk_codegen(rank, msa_len, pair_len, max_memory):
# launch colossalai
colossalai.launch(
config={},
rank=rank,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
# build model and input
model = evoformer_base().cuda()
node = torch.randn(1, msa_len, pair_len, 256).cuda()
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
# trace the module and replace codegen
graph = ColoTracer().trace(
model,
meta_args={
"node": node.to(torch.device("meta")),
"pair": pair.to(torch.device("meta")),
},
)
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
interp = MetaInfoProp(gm_prop)
interp.propagate(MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0"))
# now run it twice to get meta info in graph module, not necessary
gm = torch.fx.GraphModule(model, graph)
interp = MetaInfoProp(gm)
interp.propagate(MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0"))
codegen = AutoChunkCodeGen(gm_prop, max_memory=max_memory)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph)
gm.recompile()
# assert we have inserted chunk
code = graph.python_code("self").src
assert "chunk_size" in code
# print(code)
_test_fwd(model, gm, node, pair)
gpc.destroy()
@pytest.mark.skipif(not (CODEGEN_AVAILABLE and is_compatible_with_meta()), reason='torch version is lower than 1.12.0')
@pytest.mark.parametrize("max_memory", [None, 20, 25, 30])
@pytest.mark.parametrize("msa_len", [32])
@pytest.mark.parametrize("pair_len", [64])
def test_autochunk_codegen(msa_len, pair_len, max_memory):
run_func = partial(
_test_autochunk_codegen,
msa_len=msa_len,
pair_len=pair_len,
max_memory=max_memory,
)
mp.spawn(run_func, nprocs=1)
if __name__ == "__main__":
_test_autochunk_codegen(0, 32, 64, 25)

View File

@ -0,0 +1,102 @@
from functools import partial
import pytest
import torch
import torch.fx
import torch.multiprocessing as mp
import colossalai
from colossalai.core import global_context as gpc
from colossalai.fx._compatibility import is_compatible_with_meta
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.utils import free_port
from tests.test_autochunk.evoformer.evoformer import evoformer_base
if CODEGEN_AVAILABLE and is_compatible_with_meta():
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.fx.profiler import MetaTensor
def assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len):
found_regions = [i["region"] for i in chunk_infos]
if msa_len == 32 and pair_len == 64:
if max_memory is None:
target_regions = [(142, 154), (366, 373), (233, 283), (301, 351), (127, 134), (204, 228), (167, 191),
(161, 166), (198, 203), (6, 69)]
elif max_memory == 20:
target_regions = [(142, 154), (369, 373), (233, 269), (301, 351)]
elif max_memory == 25:
target_regions = [(144, 154), (369, 370)]
elif max_memory == 30:
target_regions = [(144, 154)]
else:
raise NotImplementedError()
else:
raise NotImplementedError()
assert len(found_regions) == len(
target_regions), "len of found regions %s doesn't equal len of target regions %s" % (
str(found_regions),
str(target_regions),
)
for region in target_regions:
assert (region in found_regions), "region:%s not in found regions for msa:%d, pair:%d, maxmem:%d" % (
str(region),
msa_len,
pair_len,
max_memory,
)
for region in found_regions:
assert (region in target_regions), "region:%s should not be found for msa:%d, pair:%d, maxmem:%d" % (
str(region),
msa_len,
pair_len,
max_memory,
)
def _test_autochunk_search(rank, msa_len, pair_len, max_memory):
# launch colossalai
colossalai.launch(
config={},
rank=rank,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
# build model and input
model = evoformer_base().cuda()
node = torch.randn(1, msa_len, pair_len, 256).cuda()
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
interp = MetaInfoProp(gm_prop)
interp.propagate(MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0"))
codegen = AutoChunkCodeGen(gm_prop, max_memory=max_memory)
chunk_infos = codegen.chunk_infos
assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len)
gpc.destroy()
@pytest.mark.skipif(not (CODEGEN_AVAILABLE and is_compatible_with_meta()), reason="torch version is lower than 1.12.0")
@pytest.mark.parametrize("max_memory", [None, 20, 25, 30])
@pytest.mark.parametrize("msa_len", [32])
@pytest.mark.parametrize("pair_len", [64])
def test_autochunk_search(msa_len, pair_len, max_memory):
run_func = partial(
_test_autochunk_search,
msa_len=msa_len,
pair_len=pair_len,
max_memory=max_memory,
)
mp.spawn(run_func, nprocs=1)
if __name__ == "__main__":
_test_autochunk_search(0, 32, 64, 20)