update doc

pull/2364/head
oahzxl 2023-01-10 12:29:09 +08:00
parent 36ab2cb783
commit 61fdd3464a
2 changed files with 21 additions and 35 deletions

View File

@ -40,20 +40,16 @@ def _test_fwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair):
non_fx_out = model(node, pair)
fx_out = gm(node, pair)
assert torch.allclose(
non_fx_out[0], fx_out[0], atol=1e-4
), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(non_fx_out[0] - fx_out[0])
)
assert torch.allclose(
non_fx_out[1], fx_out[1], atol=1e-4
), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(non_fx_out[1] - fx_out[1])
)
assert torch.allclose(non_fx_out[0], fx_out[0],
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(non_fx_out[0] - fx_out[0]))
assert torch.allclose(non_fx_out[1], fx_out[1],
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(non_fx_out[1] - fx_out[1]))
def _test_autochunk_codegen(rank, msa_len, pair_len, max_memory):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
# launch colossalai
colossalai.launch(
config={},
rank=rank,
@ -76,18 +72,14 @@ def _test_autochunk_codegen(rank, msa_len, pair_len, max_memory):
"pair": pair.to(torch.device("meta")),
},
)
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
interp = MetaInfoProp(gm_prop)
interp.propagate(
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
)
interp.propagate(MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0"))
# now run it twice to get meta info in graph module, not necessary
gm = torch.fx.GraphModule(model, graph)
interp = MetaInfoProp(gm)
interp.propagate(
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
)
interp.propagate(MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0"))
codegen = AutoChunkCodeGen(gm_prop, max_memory=max_memory)
graph.set_codegen(codegen)

View File

@ -23,7 +23,8 @@ def assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len):
if msa_len == 32 and pair_len == 64:
if max_memory is None:
target_regions = [(142, 154), (366, 373), (233, 283), (301, 351), (127, 134), (204, 228), (167, 191), (161, 166), (198, 203), (6, 69)]
target_regions = [(142, 154), (366, 373), (233, 283), (301, 351), (127, 134), (204, 228), (167, 191),
(161, 166), (198, 203), (6, 69)]
elif max_memory == 20:
target_regions = [(142, 154), (369, 373), (233, 269), (301, 351)]
elif max_memory == 25:
@ -36,24 +37,19 @@ def assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len):
raise NotImplementedError()
assert len(found_regions) == len(
target_regions
), "len of found regions %s doesn't equal len of target regions %s" % (
str(found_regions),
str(target_regions),
)
target_regions), "len of found regions %s doesn't equal len of target regions %s" % (
str(found_regions),
str(target_regions),
)
for region in target_regions:
assert (
region in found_regions
), "region:%s not in found regions for msa:%d, pair:%d, maxmem:%d" % (
assert (region in found_regions), "region:%s not in found regions for msa:%d, pair:%d, maxmem:%d" % (
str(region),
msa_len,
pair_len,
max_memory,
)
for region in found_regions:
assert (
region in target_regions
), "region:%s should not be found for msa:%d, pair:%d, maxmem:%d" % (
assert (region in target_regions), "region:%s should not be found for msa:%d, pair:%d, maxmem:%d" % (
str(region),
msa_len,
pair_len,
@ -62,7 +58,7 @@ def assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len):
def _test_autochunk_search(rank, msa_len, pair_len, max_memory):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
# launch colossalai
colossalai.launch(
config={},
rank=rank,
@ -77,11 +73,9 @@ def _test_autochunk_search(rank, msa_len, pair_len, max_memory):
node = torch.randn(1, msa_len, pair_len, 256).cuda()
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
interp = MetaInfoProp(gm_prop)
interp.propagate(
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
)
interp.propagate(MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0"))
codegen = AutoChunkCodeGen(gm_prop, max_memory=max_memory)
chunk_infos = codegen.chunk_infos