[inference]Re push async dynamic batching (#4901)

* adapt to ray server

* finish async

* finish test

* del test

---------

Co-authored-by: yuehuayingxueluo <867460659@qq.com>
pull/4905/head
Jianghai 1 year ago committed by GitHub
parent fced140250
commit fbf3c09e67
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -4,7 +4,7 @@ from .sampling_params import SamplingParams
class Req:
def __init__(self, request_id, prompt_ids, sample_params: SamplingParams):
def __init__(self, request_id, prompt_ids, sample_params: SamplingParams, prompts: str = ""):
self.request_id = request_id
self.prompt_ids = prompt_ids
self.input_len = len(prompt_ids)
@ -14,6 +14,7 @@ class Req:
self.output_metadata_list = []
self.has_generate_finished = False
self.aborted = False
self.prompts = prompts
def to_rpc_obj(self):
return {
@ -36,7 +37,11 @@ class Req:
if self.sample_params.stop_sequences is not None:
for stop_token_ids in self.sample_params.stop_sequences:
stop_len = len(stop_token_ids)
if stop_len > 0 and len(self.output_ids) >= stop_len and all(self.output_ids[-(stop_len - i)] == stop_token_ids[i] for i in range(stop_len)):
if (
stop_len > 0
and len(self.output_ids) >= stop_len
and all(self.output_ids[-(stop_len - i)] == stop_token_ids[i] for i in range(stop_len))
):
return True
return False
@ -102,7 +107,7 @@ class Batch:
has_new_finish = True
return has_new_finish
def filter_finished(self)->List[Req]:
def filter_finished(self) -> List[Req]:
"""
Filter finished requests from the batch, the finished ones will be removed from 'reqs'.
"""

@ -1,6 +1,7 @@
import time
from typing import List
import asyncio
from typing import List
from transformers import AutoTokenizer
from .dynamic_batching.infer_batch import InferBatch
from .dynamic_batching.io_struct import Batch, Req
@ -9,9 +10,9 @@ from .dynamic_batching.sampling_params import SamplingParams
from .dynamic_batching.stats import Stats
from .tensor_parallel import TPInferEngine
from transformers import AutoTokenizer
_FAST_LLAMA_TOKENIZER = "hf-internal-testing/llama-tokenizer"
class DynamicBatchManager:
def __init__(
self,
@ -19,6 +20,7 @@ class DynamicBatchManager:
max_total_token_num,
batch_max_tokens,
eos_id,
model,
log_stats=True,
log_stats_interval=10,
running_batch: Batch = None,
@ -30,6 +32,7 @@ class DynamicBatchManager:
batch_max_tokens : max tokens of one batch, default to (max input + output len) * num_requests
running_max_req_size : max request size of running batch, equals to MAX_BATCH_SIZE of tp engine
eos_id : The end token of a seq
model: the model weight dir path, the app will load config, weights and tokenizer from this dir
log_stats : whether to log stats
log_stats_interval : log stats interval
running_batch : running batch
@ -45,30 +48,30 @@ class DynamicBatchManager:
self.eos_id = eos_id
self.has_wait_tokens = 0
self.max_wait_tokens = 10
self.model = model
self.stats_tool = Stats(log_stats, log_stats_interval)
self.mem_usage_interval = log_stats_interval * 2
self._set_tokenizer(tokenizer_name=self.model)
def add_req(self, prompt_ids: List[int], sampling_params: SamplingParams, request_id: str):
async def add_req(self, request_id, prompt_ids: List[int], sampling_params: SamplingParams, prompts: str = ""):
"""
Add new request to req queue, during initialization all requests are held in waiting list.
"""
req = Req(request_id, prompt_ids, sampling_params)
req = Req(request_id, prompt_ids, sampling_params, prompts)
self.req_queue.append(req)
return
def add_input(self, request_id, sampling_params, input_ids):
async def add_input(self, request_id, sampling_params, prompts):
"""
Encode and Add new input to req queue. support one sequence input for now.
"""
prompt_ids = self.tokenizer.encode(input_ids)
prompt_ids = self.tokenizer.encode(prompts)
prompt_len = len(prompt_ids)
if prompt_len > self.engine.max_input_len:
raise ValueError(
f"the input prompt token len {prompt_len} is too long > {self.engine.max_input_len}"
)
raise ValueError(f"the input prompt token len {prompt_len} is too long > {self.engine.max_input_len}")
sampling_params.stop_sentences_to_token_ids(self.tokenizer)
self.add_req(prompt_ids, sampling_params, request_id)
self.add_req(request_id, prompt_ids, sampling_params, prompts)
return
def abort(self, request_id):
@ -88,10 +91,15 @@ class DynamicBatchManager:
The main loop for a dynamic batching process.
"""
counter_count = 0
#self.running_batch is not None or self.req_queue.waiting_req_list
# self.running_batch is not None or self.req_queue.waiting_req_list
while True:
async for item in self._step():
yield item
if self.running_batch is not None or self.req_queue.waiting_req_list:
async for result in self._step():
yield result
else:
# need to wait for new requests
await asyncio.sleep(0.1)
continue
counter_count += 1
if self.running_batch is not None:
if counter_count % self.mem_usage_interval == 0:
@ -103,30 +111,33 @@ class DynamicBatchManager:
)
self.stats_tool.print_stats()
if self.running_batch is None:
time.sleep(0.1) # 10ms
def _set_tokenizer(self, tokenizer=None, tokenizer_name: str = "", trust_remote_code: bool = False, use_fast:bool = True,):
def _set_tokenizer(
self, tokenizer=None, tokenizer_name: str = "", trust_remote_code: bool = False, use_fast: bool = True
):
if tokenizer is not None:
self.tokenizer = tokenizer
else:
if "llama" in tokenizer_name.lower() and use_fast == True:
print(
"For some LLaMA-based models, initializing the fast tokenizer may "
"take a long time. To eliminate the initialization time, consider "
f"using '{_FAST_LLAMA_TOKENIZER}' instead of the original "
"tokenizer. This is done automatically in Colossalai.")
"For some LLaMA-based models, initializing the fast tokenizer may "
"take a long time. To eliminate the initialization time, consider "
f"using '{_FAST_LLAMA_TOKENIZER}' instead of the original "
"tokenizer. This is done automatically in Colossalai."
)
tokenizer_name = _FAST_LLAMA_TOKENIZER
try:
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=use_fast,trust_remote_code=trust_remote_code)
except TypeError as e:
self.tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name, use_fast=use_fast, trust_remote_code=trust_remote_code
)
except TypeError:
use_fast = False
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=use_fast,trust_remote_code=trust_remote_code)
self.tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name, use_fast=use_fast, trust_remote_code=trust_remote_code
)
def _step(self):
async def _step(self):
"""
Logic for handling requests
"""
@ -136,14 +147,15 @@ class DynamicBatchManager:
if new_batch is not None:
self.stats_tool.count_prompt_tokens(new_batch)
self.running_batch = new_batch
yield from self._prefill_batch(self.running_batch)
async for item in self._prefill_batch(self.running_batch):
yield item
self._filter_runing_batch()
self.has_wait_tokens = 0
return
if self.has_wait_tokens < self.max_wait_tokens:
self.stats_tool.count_output_tokens(self.running_batch)
yield from self._decode_batch(self.running_batch)
self._decode_batch(self.running_batch)
self._filter_runing_batch()
self.has_wait_tokens += 1
return
@ -151,7 +163,8 @@ class DynamicBatchManager:
new_mini_batch = self.req_queue.generate_new_batch(self.running_batch)
if new_mini_batch is not None:
self.stats_tool.count_prompt_tokens(new_mini_batch)
yield from self._prefill_batch(new_mini_batch)
async for item in self._prefill_batch(new_mini_batch):
yield item
if not new_mini_batch.is_clear():
self._merge_batch(self.running_batch, new_mini_batch)
self.running_batch.merge(new_mini_batch)
@ -159,7 +172,8 @@ class DynamicBatchManager:
else:
self.stats_tool.count_output_tokens(self.running_batch)
yield from self._decode_batch(self.running_batch)
async for item in self._decode_batch(self.running_batch):
yield item
self._filter_runing_batch()
self.has_wait_tokens += 1
@ -187,7 +201,7 @@ class DynamicBatchManager:
)
self.engine.cache[batch_id] = batch_data
def _prefill_batch(self, batch):
async def _prefill_batch(self, batch):
"""
For all batches, no matter it is a new batch or a mini batch, we need to do prefill first.
"""
@ -198,11 +212,11 @@ class DynamicBatchManager:
req_to_out_token_id = ans
self._add_token_id_to_req(batch, req_to_out_token_id)
has_new_finished_req = batch.mark_finished_req(self.eos_id)
yield from self._handle_finish_req(batch, has_new_finished_req)
async for item in self._handle_finish_req(batch, has_new_finished_req):
yield item
# delete finished reqs
def _decode_batch(self, batch: Batch):
async def _decode_batch(self, batch: Batch):
"""
Decoding process
"""
@ -210,7 +224,8 @@ class DynamicBatchManager:
req_to_out_token_id = ans
self._add_token_id_to_req(batch, req_to_out_token_id)
has_new_finished_req = batch.mark_finished_req(self.eos_id)
yield from self._handle_finish_req(batch, has_new_finished_req)
async for item in self._handle_finish_req(batch, has_new_finished_req):
yield item
def _filter_batch(self, batch: Batch):
batch_id = batch.batch_id
@ -240,15 +255,15 @@ class DynamicBatchManager:
batch.free_self()
del batch
def _handle_finish_req(self, batch: Batch, has_new_finished_req):
async def _handle_finish_req(self, batch: Batch, has_new_finished_req):
if has_new_finished_req:
finished_reqs=batch.filter_finished()
finished_reqs = batch.filter_finished()
if batch.is_clear():
self._remove_batch(batch)
else:
self._filter_batch(batch)
yield from self._output_process(finished_reqs)
async for item in self._output_process(finished_reqs):
yield item
def _filter_runing_batch(self):
if self.running_batch is not None and self.running_batch.is_clear():
@ -267,17 +282,23 @@ class DynamicBatchManager:
"""
for req in finished_reqs:
output = self.tokenizer.decode(req.output_ids)
yield output, req.request_id, req.output_metadata_list
yield req.prompts + output
def clean_up(self):
# this logic should be implemented in the future.
pass
async def generate(self,request_id,prompt_id,sampling_params):
async def generate(self, request_id, prompt_id, sampling_params):
"""
Generate the output of a request.
"""
self.add_input(request_id,prompt_id,sampling_params)
await self.add_input(request_id, prompt_id, sampling_params)
async def process_data(dbm):
async for data in dbm.loop_for_fwd():
print(data)
def start_dynamic_batching(args, tp_engine, waiting_req_list):
@ -287,21 +308,13 @@ def start_dynamic_batching(args, tp_engine, waiting_req_list):
max_total_token_num=args.max_total_token_num,
batch_max_tokens=args.batch_max_tokens,
eos_id=args.eos_id,
model=args.model,
log_stats=not args.disable_log_stats,
log_stats_interval=args.log_stats_interval,
waiting_req_list=waiting_req_list,
)
except Exception:
batch_manager.clean_up()
raise
batch_manager._set_tokenizer(tokenizer_name = tp_engine.model.__class__.__name__)
prod_task = asyncio.create_task(batch_manager.add_input(4,sampling_params=SamplingParams(),input_ids="hello world"))
asyncio.run(prod_task)
for item in batch_manager.loop_for_fwd():
print(item)
raise RuntimeError("Failed to start dynamic batching")
return batch_manager

@ -1,33 +0,0 @@
import asyncio
shared_list = []
async def producer():
for i in range(5):
await asyncio.sleep(1) # 模拟异步获取数据的操作
shared_list.append(i)
print(f"Produced {i}")
async def consumer():
last_index = 0
while True:
await asyncio.sleep(0.5) # 为了不使循环过于紧凑,增加了小的延迟
if last_index < len(shared_list):
item = shared_list[last_index]
print(f"Consumed {item}")
yield item
last_index += 1
async def main():
# 创建生产者和消费者任务
prod_task = asyncio.create_task(producer())
# 等待生产者任务完成
await prod_task
async for data in consumer():
print(data)
# 为了示例的目的,我们只等待一段时间,然后停止消费者
await asyncio.sleep(5)
asyncio.run(main())

@ -1,3 +1,6 @@
import asyncio
from dataclasses import dataclass
import pytest
import torch
from packaging import version
@ -5,10 +8,9 @@ from transformers import LlamaForCausalLM
from transformers.models.llama.configuration_llama import LlamaConfig
import colossalai
from dataclasses import dataclass
from colossalai.inference.dynamic_batching.io_struct import Req
from colossalai.inference.dynamic_batching.sampling_params import SamplingParams
from colossalai.inference.manager import start_dynamic_batching
from colossalai.inference.manager import process_data, start_dynamic_batching
from colossalai.inference.tensor_parallel import TPInferEngine
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
@ -19,17 +21,26 @@ MAX_INPUT_LEN = 5
MAX_OUTPUT_LEN = 16
CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.5")
@dataclass
class args:
max_total_token_num: int
batch_max_tokens: int
eos_id: int
model: str
disable_log_stats: bool
log_stats_interval: int
def run():
arg = args(max_total_token_num=42, batch_max_tokens=42, eos_id=0, disable_log_stats=False, log_stats_interval=10)
arg = args(
max_total_token_num=42,
batch_max_tokens=42,
eos_id=0,
model="llama",
disable_log_stats=False,
log_stats_interval=10,
)
sampling_params = SamplingParams()
req1 = Req(0, [0, 0, 10, 6, 8], sampling_params)
@ -51,12 +62,14 @@ def run():
infer_engine = TPInferEngine(model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
manager = start_dynamic_batching(arg, tp_engine=infer_engine, waiting_req_list=waiting_list)
manager._set_tokenizer(tokenizer_name = model.__class__.__name__)
result_generator = manager.loop_for_fwd()
for result in result_generator:
print(result)
asyncio.run(test(manager))
async def test(manager):
asyncio.create_task(process_data(manager))
await asyncio.sleep(5)
await manager.add_req(4, [0, 0, 10, 10, 10], SamplingParams())
await asyncio.sleep(5)
def check_dynamic_forward(rank, world_size, port):

Loading…
Cancel
Save