polish code

pull/2364/head
oahzxl 2022-11-15 10:46:51 +08:00
parent 7e2bd1e428
commit fad3b6d1a6
1 changed files with 237 additions and 237 deletions

View File

@ -10,6 +10,13 @@ CODEGEN_AVAILABLE = True
__all__ = ['ChunkCodeGen'] __all__ = ['ChunkCodeGen']
def _delete_free_var_from_last_use(user_to_last_uses):
for key, value in user_to_last_uses.items():
for n in value:
if n.op == 'placeholder':
user_to_last_uses[key].remove(n)
class NodeIndexTracer(object): class NodeIndexTracer(object):
def __init__(self, gm) -> None: def __init__(self, gm) -> None:
self.gm = gm self.gm = gm
@ -19,7 +26,7 @@ class NodeIndexTracer(object):
self.idx_view_list = [] self.idx_view_list = []
self.idx_count = -1 self.idx_count = -1
def add_index(self): def _add_index(self):
""" """
Update the count and return it. To record the idx number. Update the count and return it. To record the idx number.
@ -29,7 +36,7 @@ class NodeIndexTracer(object):
self.idx_count += 1 self.idx_count += 1
return self.idx_count return self.idx_count
def inherit_computation(self, node_from, node_to): def _inherit_computation(self, node_from, node_to):
""" """
Inherit computed dim from node_from to node_to. Inherit computed dim from node_from to node_to.
If a dim in node_from is marked as computed and exists in node_to, If a dim in node_from is marked as computed and exists in node_to,
@ -39,13 +46,13 @@ class NodeIndexTracer(object):
node_from (node): node to be inherited node_from (node): node to be inherited
node_to (node): new node to inherit node_to (node): new node to inherit
""" """
_, compute_from = self.find_trace_from_node(node_from) _, compute_from = self._find_trace_from_node(node_from)
idx_to, compute_to = self.find_trace_from_node(node_to) idx_to, compute_to = self._find_trace_from_node(node_to)
for i in compute_from: for i in compute_from:
if i in idx_to and i not in compute_to: if i in idx_to and i not in compute_to:
compute_to.append(i) compute_to.append(i)
def mark_idx_equal(self, idx1, idx2): def _mark_idx_equal(self, idx1, idx2):
""" """
Mark 2 index to be equal. Mark 2 index to be equal.
@ -55,7 +62,7 @@ class NodeIndexTracer(object):
""" """
self.idx_trace_equal.append((idx1, idx2)) self.idx_trace_equal.append((idx1, idx2))
def mark_computation(self, node, idx, dim): def _mark_computation(self, node, idx, dim):
""" """
Mark some dims of node as computed. Mark some dims of node as computed.
@ -64,7 +71,7 @@ class NodeIndexTracer(object):
idx (int): node index idx (int): node index
dim (list or int): dims to be marked as computed dim (list or int): dims to be marked as computed
""" """
input_node_idx_trace = self.find_idx_trace_from_node(node) input_node_idx_trace = self._find_idx_trace_from_node(node)
if isinstance(dim, int): if isinstance(dim, int):
dim = [dim] dim = [dim]
for d in dim: for d in dim:
@ -72,7 +79,7 @@ class NodeIndexTracer(object):
if cur_idx not in self.idx_trace_list[idx]['compute']: if cur_idx not in self.idx_trace_list[idx]['compute']:
self.idx_trace_list[idx]['compute'].append(cur_idx) self.idx_trace_list[idx]['compute'].append(cur_idx)
def find_trace_from_node(self, node): def _find_trace_from_node(self, node):
""" """
Find node idx and compute trace by the node. Find node idx and compute trace by the node.
@ -86,7 +93,7 @@ class NodeIndexTracer(object):
node_dict = self.idx_trace_list[node_idx] node_dict = self.idx_trace_list[node_idx]
return node_dict['idx'], node_dict['compute'] return node_dict['idx'], node_dict['compute']
def find_idx_trace_from_node(self, node): def _find_idx_trace_from_node(self, node):
""" """
Find node idx trace by the node. Find node idx trace by the node.
@ -98,7 +105,7 @@ class NodeIndexTracer(object):
node_idx = _find_idx_by_name(node.name, self.nodes_list) node_idx = _find_idx_by_name(node.name, self.nodes_list)
return self.idx_trace_list[node_idx]['idx'] return self.idx_trace_list[node_idx]['idx']
def find_compute_trace_from_node(self, node): def _find_compute_trace_from_node(self, node):
""" """
Find node compute trace by the node. Find node compute trace by the node.
@ -110,7 +117,7 @@ class NodeIndexTracer(object):
node_idx = _find_idx_by_name(node.name, self.nodes_list) node_idx = _find_idx_by_name(node.name, self.nodes_list)
return self.idx_trace_list[node_idx]['compute'] return self.idx_trace_list[node_idx]['compute']
def assign_index_as_input(self, node, node_idx): def _assign_index_as_input(self, node, node_idx):
""" """
Assign node's trace as its input node. Assign node's trace as its input node.
@ -124,7 +131,7 @@ class NodeIndexTracer(object):
new_idx_trace = copy.deepcopy(input_node_idx_trace) new_idx_trace = copy.deepcopy(input_node_idx_trace)
self.idx_trace_list[node_idx]['idx'] = new_idx_trace self.idx_trace_list[node_idx]['idx'] = new_idx_trace
def assign_all_index(self, node, node_idx): def _assign_all_index(self, node, node_idx):
""" """
Add new index for all node's dims. Add new index for all node's dims.
@ -135,10 +142,10 @@ class NodeIndexTracer(object):
shape = node.meta['tensor_meta'].shape shape = node.meta['tensor_meta'].shape
new_trace = [] new_trace = []
for _ in shape: for _ in shape:
new_trace.append(self.add_index()) new_trace.append(self._add_index())
self.idx_trace_list[node_idx]['idx'] = new_trace self.idx_trace_list[node_idx]['idx'] = new_trace
def assign_transpose_index(self, node, node_idx): def _assign_transpose_index(self, node, node_idx):
""" """
Assign index for transpose op. Assign index for transpose op.
1. swap input's dim according to transpose args 1. swap input's dim according to transpose args
@ -149,16 +156,16 @@ class NodeIndexTracer(object):
node_idx (int) node_idx (int)
""" """
tranpose_dim = node.args[1:] tranpose_dim = node.args[1:]
input_node_idx_trace = self.find_idx_trace_from_node(node.args[0]) input_node_idx_trace = self._find_idx_trace_from_node(node.args[0])
new_idx_trace = copy.deepcopy(input_node_idx_trace) new_idx_trace = copy.deepcopy(input_node_idx_trace)
new_idx_trace[tranpose_dim[0]] = input_node_idx_trace[tranpose_dim[1]] new_idx_trace[tranpose_dim[0]] = input_node_idx_trace[tranpose_dim[1]]
new_idx_trace[tranpose_dim[1]] = input_node_idx_trace[tranpose_dim[0]] new_idx_trace[tranpose_dim[1]] = input_node_idx_trace[tranpose_dim[0]]
self.idx_trace_list[node_idx]['idx'] = new_idx_trace self.idx_trace_list[node_idx]['idx'] = new_idx_trace
self.inherit_computation(node.args[0], node) self._inherit_computation(node.args[0], node)
def assign_permute_index(self, node, node_idx): def _assign_permute_index(self, node, node_idx):
""" """
Assign index for permute op. Assign index for permute op.
1. swap input's dim according to permute args 1. swap input's dim according to permute args
@ -169,16 +176,16 @@ class NodeIndexTracer(object):
node_idx (int) node_idx (int)
""" """
permute_dim = node.args[1:] permute_dim = node.args[1:]
input_node_idx_trace = self.find_idx_trace_from_node(node.args[0]) input_node_idx_trace = self._find_idx_trace_from_node(node.args[0])
new_idx_trace = copy.deepcopy(input_node_idx_trace) new_idx_trace = copy.deepcopy(input_node_idx_trace)
for idx, d in enumerate(permute_dim): for idx, d in enumerate(permute_dim):
new_idx_trace[idx] = input_node_idx_trace[d] new_idx_trace[idx] = input_node_idx_trace[d]
self.idx_trace_list[node_idx]['idx'] = new_idx_trace self.idx_trace_list[node_idx]['idx'] = new_idx_trace
self.inherit_computation(node.args[0], node) self._inherit_computation(node.args[0], node)
def assign_linear_index(self, node, node_idx): def _assign_linear_index(self, node, node_idx):
""" """
Assign index for linear op. Assign index for linear op.
1. copy trace from input node and change last index accroding to weight 1. copy trace from input node and change last index accroding to weight
@ -190,22 +197,22 @@ class NodeIndexTracer(object):
node_idx (int) node_idx (int)
""" """
input_node, weight, bias = node.args input_node, weight, bias = node.args
input_node_idx_trace = self.find_idx_trace_from_node(input_node) input_node_idx_trace = self._find_idx_trace_from_node(input_node)
weight_idx_trace = self.find_idx_trace_from_node(weight) weight_idx_trace = self._find_idx_trace_from_node(weight)
new_idx_trace = copy.deepcopy(input_node_idx_trace) new_idx_trace = copy.deepcopy(input_node_idx_trace)
new_idx_trace[-1] = weight_idx_trace[1] new_idx_trace[-1] = weight_idx_trace[1]
self.idx_trace_list[node_idx]['idx'] = new_idx_trace self.idx_trace_list[node_idx]['idx'] = new_idx_trace
self.inherit_computation(input_node, node) self._inherit_computation(input_node, node)
self.mark_computation(node, node_idx, [-1]) self._mark_computation(node, node_idx, [-1])
self.mark_idx_equal(input_node_idx_trace[-1], weight_idx_trace[0]) self._mark_idx_equal(input_node_idx_trace[-1], weight_idx_trace[0])
if bias: if bias:
bias_idx_trace = self.find_idx_trace_from_node(bias) bias_idx_trace = self._find_idx_trace_from_node(bias)
self.mark_idx_equal(input_node_idx_trace[-1], bias_idx_trace[0]) self._mark_idx_equal(input_node_idx_trace[-1], bias_idx_trace[0])
def assign_matmul_index(self, node, node_idx): def _assign_matmul_index(self, node, node_idx):
""" """
Assign index for matmul op. Assign index for matmul op.
1. copy trace from matmul_left and change last index accroding to matmul_right. (assert they have same length) 1. copy trace from matmul_left and change last index accroding to matmul_right. (assert they have same length)
@ -217,20 +224,20 @@ class NodeIndexTracer(object):
node_idx (int) node_idx (int)
""" """
matmul_left, matmul_right = node.args matmul_left, matmul_right = node.args
matmul_left_idx_trace = self.find_idx_trace_from_node(matmul_left) matmul_left_idx_trace = self._find_idx_trace_from_node(matmul_left)
matmul_right_idx_trace = self.find_idx_trace_from_node(matmul_right) matmul_right_idx_trace = self._find_idx_trace_from_node(matmul_right)
assert(len(matmul_left_idx_trace) == len(matmul_right_idx_trace)) assert(len(matmul_left_idx_trace) == len(matmul_right_idx_trace))
new_idx_trace = copy.deepcopy(matmul_left_idx_trace) new_idx_trace = copy.deepcopy(matmul_left_idx_trace)
new_idx_trace[-1] = matmul_right_idx_trace[-1] new_idx_trace[-1] = matmul_right_idx_trace[-1]
self.idx_trace_list[node_idx]['idx'] = new_idx_trace self.idx_trace_list[node_idx]['idx'] = new_idx_trace
self.inherit_computation(matmul_left, node) self._inherit_computation(matmul_left, node)
self.inherit_computation(matmul_right, node) self._inherit_computation(matmul_right, node)
self.mark_computation(node, node_idx, [-1]) self._mark_computation(node, node_idx, [-1])
self.mark_idx_equal(matmul_left_idx_trace[-1], matmul_right_idx_trace[-2]) self._mark_idx_equal(matmul_left_idx_trace[-1], matmul_right_idx_trace[-2])
def assign_layernorm_index(self, node, idx): def _assign_layernorm_index(self, node, idx):
""" """
Assign index for layernorm op. Assign index for layernorm op.
1. assign index as input node 1. assign index as input node
@ -240,11 +247,11 @@ class NodeIndexTracer(object):
node (node) node (node)
node_idx (int) node_idx (int)
""" """
self.assign_index_as_input(node, idx) self._assign_index_as_input(node, idx)
self.inherit_computation(node.args[0], node) self._inherit_computation(node.args[0], node)
self.mark_computation(node, idx, [-1, -2]) self._mark_computation(node, idx, [-1, -2])
def assign_elementwise_index(self, node, idx): def _assign_elementwise_index(self, node, idx):
""" """
Assign index for element-wise op (eg. relu sigmoid add mul). Assign index for element-wise op (eg. relu sigmoid add mul).
1. assign index as input node 1. assign index as input node
@ -254,12 +261,12 @@ class NodeIndexTracer(object):
node (node) node (node)
node_idx (int) node_idx (int)
""" """
self.assign_index_as_input(node, idx) self._assign_index_as_input(node, idx)
for node_in in node.args: for node_in in node.args:
if type(node_in) not in (int, float): if type(node_in) not in (int, float):
self.inherit_computation(node_in, node) self._inherit_computation(node_in, node)
def assign_softmax_index(self, node, idx): def _assign_softmax_index(self, node, idx):
""" """
Assign index for softmax op. Assign index for softmax op.
1. assign index as input node 1. assign index as input node
@ -269,11 +276,11 @@ class NodeIndexTracer(object):
node (node) node (node)
node_idx (int) node_idx (int)
""" """
self.assign_index_as_input(node, idx) self._assign_index_as_input(node, idx)
self.inherit_computation(node.args[0], node) self._inherit_computation(node.args[0], node)
self.mark_computation(node, idx, [node.kwargs['dim']]) self._mark_computation(node, idx, [node.kwargs['dim']])
def assign_view_reshape_index(self, node, node_idx): def _assign_view_reshape_index(self, node, node_idx):
""" """
Assign index for view and reshape op. Assign index for view and reshape op.
1. get origin shape and target shape by meta info. 1. get origin shape and target shape by meta info.
@ -325,22 +332,22 @@ class NodeIndexTracer(object):
raise NotImplementedError("shape" + str(origin_shape) + 'and' + str(target_shape) + "view not implemented") raise NotImplementedError("shape" + str(origin_shape) + 'and' + str(target_shape) + "view not implemented")
# get new index # get new index
origin_trace = self.find_idx_trace_from_node(origin_node) origin_trace = self._find_idx_trace_from_node(origin_node)
new_trace = copy.deepcopy(origin_trace) new_trace = copy.deepcopy(origin_trace)
dim_from.reverse() dim_from.reverse()
for i in dim_from: for i in dim_from:
new_trace.pop(i) new_trace.pop(i)
for i in dim_to: for i in dim_to:
new_trace.insert(i, self.add_index()) new_trace.insert(i, self._add_index())
self.idx_trace_list[node_idx]['idx'] = new_trace self.idx_trace_list[node_idx]['idx'] = new_trace
# inherit computation # inherit computation
self.inherit_computation(origin_node, node) self._inherit_computation(origin_node, node)
compute_log = self.find_compute_trace_from_node(origin_node) compute_log = self._find_compute_trace_from_node(origin_node)
for i in dim_from: for i in dim_from:
if origin_trace[i] in compute_log: if origin_trace[i] in compute_log:
for j in dim_to: for j in dim_to:
self.mark_computation(node, node_idx, [j]) self._mark_computation(node, node_idx, [j])
break break
# log view, not used now # log view, not used now
@ -353,25 +360,25 @@ class NodeIndexTracer(object):
def trace_node_idx(self): def trace_node_idx(self):
for idx, node in enumerate(self.nodes_list): for idx, node in enumerate(self.nodes_list):
if node.op == 'placeholder': if node.op == 'placeholder':
self.assign_all_index(node, idx) self._assign_all_index(node, idx)
elif node.op == 'call_method': elif node.op == 'call_method':
if 'transpose' in node.name: if 'transpose' in node.name:
self.assign_transpose_index(node, idx) self._assign_transpose_index(node, idx)
elif 'permute' in node.name: elif 'permute' in node.name:
self.assign_permute_index(node, idx) self._assign_permute_index(node, idx)
elif 'view' in node.name or 'reshape' in node.name: elif 'view' in node.name or 'reshape' in node.name:
self.assign_view_reshape_index(node, idx) self._assign_view_reshape_index(node, idx)
else: else:
raise NotImplementedError(node.name, "method not implemented yet!") raise NotImplementedError(node.name, "method not implemented yet!")
elif node.op == 'call_function': elif node.op == 'call_function':
if 'linear' in node.name: if 'linear' in node.name:
self.assign_linear_index(node, idx) self._assign_linear_index(node, idx)
elif 'matmul' in node.name: elif 'matmul' in node.name:
self.assign_matmul_index(node, idx) self._assign_matmul_index(node, idx)
elif 'softmax' in node.name: elif 'softmax' in node.name:
self.assign_softmax_index(node, idx) self._assign_softmax_index(node, idx)
elif any(n in node.name for n in ['mul', 'add', 'sigmoid', 'relu']): elif any(n in node.name for n in ['mul', 'add', 'sigmoid', 'relu']):
self.assign_elementwise_index(node, idx) self._assign_elementwise_index(node, idx)
elif 'getattr' in node.name: elif 'getattr' in node.name:
continue # get attr like shape continue # get attr like shape
elif 'getitem' in node.name: elif 'getitem' in node.name:
@ -380,206 +387,198 @@ class NodeIndexTracer(object):
raise NotImplementedError(node.name, "function not implemented yet!") raise NotImplementedError(node.name, "function not implemented yet!")
elif node.op == 'call_module': elif node.op == 'call_module':
if any(n in node.name for n in ['layernorm', 'norm']): if any(n in node.name for n in ['layernorm', 'norm']):
self.assign_layernorm_index(node, idx) self._assign_layernorm_index(node, idx)
else: else:
raise NotImplementedError(node.name, "module not implemented yet!") raise NotImplementedError(node.name, "module not implemented yet!")
elif node.op == 'get_attr': elif node.op == 'get_attr':
self.assign_all_index(node, idx) # get param self._assign_all_index(node, idx) # get param
elif node.op == 'output': elif node.op == 'output':
continue continue
else: else:
raise NotImplementedError(node.op, "op not implemented yet!") raise NotImplementedError(node.op, "op not implemented yet!")
def _get_meta_node_size(x): class MemoryEstimator(object):
x = x.meta['tensor_meta'] def __init__(self) -> None:
x = x.numel * torch.tensor([], dtype=x.dtype).element_size() pass
return x
def _get_meta_node_size(self, x):
x = x.meta['tensor_meta']
x = x.numel * torch.tensor([], dtype=x.dtype).element_size()
return x
def _get_output_node_size(n): def _get_output_node_size(self, n):
fwd_out = {x.uuid: x for x in n.meta["fwd_out"] if isinstance(x, torch.Tensor) and hasattr(x, 'uuid')} fwd_out = {x.uuid: x for x in n.meta["fwd_out"] if isinstance(x, torch.Tensor) and hasattr(x, 'uuid')}
return activation_size(fwd_out) return activation_size(fwd_out)
def _get_delete_node_size(self, user, user_to_last_uses):
def _get_delete_node_size(user, user_to_last_uses): if user.op in ('placeholder', 'output'):
if user.op in ('placeholder', 'output'): return 0
nodes_to_delete = user_to_last_uses.get(user, [])
if len(nodes_to_delete):
delete_size = sum([self._get_output_node_size(i) for i in nodes_to_delete])
return delete_size
return 0 return 0
nodes_to_delete = user_to_last_uses.get(user, [])
if len(nodes_to_delete):
delete_size = sum([_get_output_node_size(i) for i in nodes_to_delete])
return delete_size
return 0
def _get_last_usr(self, nodes):
node_to_last_use: Dict[Node, Node] = {}
user_to_last_uses: Dict[Node, List[Node]] = {}
def _get_last_usr(nodes): def register_last_uses(n: Node, user: Node):
node_to_last_use: Dict[Node, Node] = {} if n not in node_to_last_use:
user_to_last_uses: Dict[Node, List[Node]] = {} node_to_last_use[n] = user
user_to_last_uses.setdefault(user, []).append(n)
def register_last_uses(n: Node, user: Node): for node in reversed(nodes):
if n not in node_to_last_use: map_arg(node.args, lambda n: register_last_uses(n, node))
node_to_last_use[n] = user map_arg(node.kwargs, lambda n: register_last_uses(n, node))
user_to_last_uses.setdefault(user, []).append(n) return user_to_last_uses
for node in reversed(nodes): def _get_contiguous_memory(self, node, not_contiguous_list, delete=False):
map_arg(node.args, lambda n: register_last_uses(n, node)) mem = 0
map_arg(node.kwargs, lambda n: register_last_uses(n, node)) not_contiguous_ops = ['transpose', 'permute']
return user_to_last_uses
if node.op == 'call_function' and 'matmul' in node.name:
for n in node.args:
if n in not_contiguous_list:
# matmul won't change origin tensor, but create a tmp copy
mem += self._get_output_node_size(n)
elif node.op == 'call_module':
for n in node.args:
if n in not_contiguous_list:
# module will just make origin tensor to contiguous
if delete:
not_contiguous_list.remove(n)
elif node.op == 'call_method' and any(i in node.name for i in not_contiguous_ops):
if node not in not_contiguous_list:
not_contiguous_list.append(node)
elif any(i in node.args for i in not_contiguous_list):
if node not in not_contiguous_list:
not_contiguous_list.append(node)
def _delete_free_var_from_last_use(user_to_last_uses): return mem
for key, value in user_to_last_uses.items():
for n in value:
if n.op == 'placeholder':
user_to_last_uses[key].remove(n)
def estimate_inference_mem(self, gm: torch.fx.GraphModule):
def _get_contiguous_memory(node, not_contiguous_list, delete=False): act_memory = 0.0
mem = 0 act_memory_peak_log = []
not_contiguous_ops = ['transpose', 'permute'] act_memory_after_node_log = []
not_contiguous_list = []
if node.op == 'call_function' and 'matmul' in node.name: user_to_last_uses = self._get_last_usr(list(gm.graph.nodes))
for n in node.args: _delete_free_var_from_last_use(user_to_last_uses)
if n in not_contiguous_list: for node in gm.graph.nodes:
# matmul won't change origin tensor, but create a tmp copy # if node is placeholder, just add the size of the node
mem += _get_output_node_size(n) if node.op == 'placeholder':
elif node.op == 'call_module': act_memory += self._get_meta_node_size(node) / (1024 ** 2)
for n in node.args: act_memory_peak_log.append(act_memory)
if n in not_contiguous_list: act_memory_after_node_log.append(act_memory)
# module will just make origin tensor to contiguous # skip output
if delete: elif node.op == 'output':
not_contiguous_list.remove(n) continue
elif node.op == 'call_method' and any(i in node.name for i in not_contiguous_ops): # node is an operation, calculate tmp, output node and delete node memory
if node not in not_contiguous_list:
not_contiguous_list.append(node)
elif any(i in node.args for i in not_contiguous_list):
if node not in not_contiguous_list:
not_contiguous_list.append(node)
return mem
def _estimate_inference_mem(gm: torch.fx.GraphModule):
act_memory = 0.0
act_memory_peak_log = []
act_memory_after_node_log = []
not_contiguous_list = []
user_to_last_uses = _get_last_usr(list(gm.graph.nodes))
_delete_free_var_from_last_use(user_to_last_uses)
for node in gm.graph.nodes:
# if node is placeholder, just add the size of the node
if node.op == 'placeholder':
act_memory += _get_meta_node_size(node) / (1024 ** 2)
act_memory_peak_log.append(act_memory)
act_memory_after_node_log.append(act_memory)
# skip output
elif node.op == 'output':
continue
# node is an operation, calculate tmp, output node and delete node memory
else:
# forward memory
act_memory += _get_contiguous_memory(node, not_contiguous_list) / (1024 ** 2)
act_memory += _get_output_node_size(node) / (1024 ** 2)
# record max act memory
act_memory_peak_log.append(act_memory)
# delete useless memory
act_memory -= _get_delete_node_size(node, user_to_last_uses) / (1024 ** 2)
act_memory -= _get_contiguous_memory(node, not_contiguous_list, delete=True) / (1024 ** 2)
act_memory_after_node_log.append(act_memory)
print("no chunk")
_print_mem_log(act_memory_peak_log, list(gm.graph.nodes), "peak")
_print_mem_log(act_memory_after_node_log, list(gm.graph.nodes), "after")
param_memory = parameter_size(gm)
return act_memory + param_memory, param_memory
def _get_chunk_ratio(node, chunk_dim, chunk_size):
shape = node.meta['tensor_meta'].shape
chunk_ratio = float(chunk_size) / shape[chunk_dim]
return chunk_ratio
def _get_chunk_delete_node_size(user, user_to_last_uses, chunk_ratio, node_list, start_node, end_node):
if user.op in ('placeholder', 'output'):
return 0
nodes_to_delete = user_to_last_uses.get(user, [])
delete_size = 0
for n in nodes_to_delete:
node_idx = _find_idx_by_name(n.name, node_list)
if start_node <= node_idx < end_node:
delete_size += _get_output_node_size(n) * chunk_ratio
return delete_size
def _print_mem_log(log, nodes, title=None):
if title:
print(title)
for idx, (l, n) in enumerate(zip(log, nodes)):
print("%s:%.2f \t" % (n.name, l), end='')
if (idx + 1) % 3 == 0:
print("")
print("\n")
def _estimate_chunk_inference_mem(gm: torch.fx.GraphModule, start_nodes, end_nodes, chunk_dims, chunk_sizes):
act_memory = 0.0
act_memory_peak_log = []
act_memory_after_node_log = []
not_contiguous_list = []
user_to_last_uses = _get_last_usr(list(gm.graph.nodes))
_delete_free_var_from_last_use(user_to_last_uses)
within_chunk = False
region_idx = 0
chunk_ratio = 1 # use it to estimate chunk mem
node_list = list(gm.graph.nodes)
for idx, node in enumerate(node_list):
# if node in chunk start nodes, change chunk ratio and add chunk_tensor
if idx in start_nodes:
within_chunk = True
chunk_ratio = _get_chunk_ratio(node, chunk_dims[region_idx], chunk_sizes[region_idx])
act_memory += _get_output_node_size(node_list[end_nodes[region_idx]]) / (1024 ** 2)
# if node is placeholder, just add the size of the node
if node.op == 'placeholder':
act_memory += _get_meta_node_size(node) * chunk_ratio / (1024 ** 2)
act_memory_peak_log.append(act_memory)
# skip output
elif node.op == 'output':
continue
# node is an operation, calculate tmp, output node and delete node memory
else:
# forward memory
# TODO: permute will create a tmp copy if not contiguous
act_memory += _get_contiguous_memory(node, not_contiguous_list) * chunk_ratio / (1024 ** 2)
act_memory += _get_output_node_size(node) * chunk_ratio / (1024 ** 2)
# record max act memory
act_memory_peak_log.append(act_memory)
# delete useless memory
act_memory -= _get_contiguous_memory(node, not_contiguous_list, delete=True) * chunk_ratio / (1024 ** 2)
if within_chunk:
act_memory -= _get_chunk_delete_node_size(
node, user_to_last_uses, chunk_ratio, node_list,
start_nodes[region_idx], end_nodes[region_idx]) / (1024 ** 2)
else: else:
act_memory -= _get_delete_node_size(node, user_to_last_uses) / (1024 ** 2) # forward memory
act_memory += self._get_contiguous_memory(node, not_contiguous_list) / (1024 ** 2)
if idx in end_nodes: act_memory += self._get_output_node_size(node) / (1024 ** 2)
act_memory -= _get_output_node_size(node) * chunk_ratio / (1024 ** 2) # record max act memory
within_chunk = False act_memory_peak_log.append(act_memory)
chunk_ratio = 1 # delete useless memory
region_idx += 1 act_memory -= self._get_delete_node_size(node, user_to_last_uses) / (1024 ** 2)
act_memory -= self._get_contiguous_memory(node, not_contiguous_list, delete=True) / (1024 ** 2)
act_memory_after_node_log.append(act_memory)
print("no chunk")
self._print_mem_log(act_memory_peak_log, list(gm.graph.nodes), "peak")
self._print_mem_log(act_memory_after_node_log, list(gm.graph.nodes), "after")
act_memory_after_node_log.append(act_memory) param_memory = parameter_size(gm)
return act_memory + param_memory, param_memory
print("chunk")
_print_mem_log(act_memory_peak_log, node_list, "peak")
_print_mem_log(act_memory_after_node_log, node_list, "after")
param_memory = parameter_size(gm) def _get_chunk_ratio(self, node, chunk_dim, chunk_size):
return act_memory + param_memory, param_memory shape = node.meta['tensor_meta'].shape
chunk_ratio = float(chunk_size) / shape[chunk_dim]
return chunk_ratio
def _get_chunk_delete_node_size(self, user, user_to_last_uses, chunk_ratio, node_list, start_node, end_node):
if user.op in ('placeholder', 'output'):
return 0
nodes_to_delete = user_to_last_uses.get(user, [])
delete_size = 0
for n in nodes_to_delete:
node_idx = _find_idx_by_name(n.name, node_list)
if start_node <= node_idx < end_node:
delete_size += self._get_output_node_size(n) * chunk_ratio
return delete_size
def _print_mem_log(self, log, nodes, title=None):
if title:
print(title)
for idx, (l, n) in enumerate(zip(log, nodes)):
print("%s:%.2f \t" % (n.name, l), end='')
if (idx + 1) % 3 == 0:
print("")
print("\n")
def estimate_chunk_inference_mem(self, gm: torch.fx.GraphModule, start_nodes, end_nodes, chunk_dims, chunk_sizes):
act_memory = 0.0
act_memory_peak_log = []
act_memory_after_node_log = []
not_contiguous_list = []
user_to_last_uses = self._get_last_usr(list(gm.graph.nodes))
_delete_free_var_from_last_use(user_to_last_uses)
within_chunk = False
region_idx = 0
chunk_ratio = 1 # use it to estimate chunk mem
node_list = list(gm.graph.nodes)
for idx, node in enumerate(node_list):
# if node in chunk start nodes, change chunk ratio and add chunk_tensor
if idx in start_nodes:
within_chunk = True
chunk_ratio = self._get_chunk_ratio(node, chunk_dims[region_idx], chunk_sizes[region_idx])
act_memory += self._get_output_node_size(node_list[end_nodes[region_idx]]) / (1024 ** 2)
# if node is placeholder, just add the size of the node
if node.op == 'placeholder':
act_memory += self._get_meta_node_size(node) * chunk_ratio / (1024 ** 2)
act_memory_peak_log.append(act_memory)
# skip output
elif node.op == 'output':
continue
# node is an operation, calculate tmp, output node and delete node memory
else:
# forward memory
# TODO: permute will create a tmp copy if not contiguous
act_memory += self._get_contiguous_memory(node, not_contiguous_list) * chunk_ratio / (1024 ** 2)
act_memory += self._get_output_node_size(node) * chunk_ratio / (1024 ** 2)
# record max act memory
act_memory_peak_log.append(act_memory)
# delete useless memory
act_memory -= self._get_contiguous_memory(node, not_contiguous_list, delete=True) * chunk_ratio / (1024 ** 2)
if within_chunk:
act_memory -= self._get_chunk_delete_node_size(
node, user_to_last_uses, chunk_ratio, node_list,
start_nodes[region_idx], end_nodes[region_idx]) / (1024 ** 2)
else:
act_memory -= self._get_delete_node_size(node, user_to_last_uses) / (1024 ** 2)
if idx in end_nodes:
act_memory -= self._get_output_node_size(node) * chunk_ratio / (1024 ** 2)
within_chunk = False
chunk_ratio = 1
region_idx += 1
act_memory_after_node_log.append(act_memory)
print("chunk")
self._print_mem_log(act_memory_peak_log, node_list, "peak")
self._print_mem_log(act_memory_after_node_log, node_list, "after")
param_memory = parameter_size(gm)
return act_memory + param_memory, param_memory
def _gen_chunk_slice_dim(chunk_dim, chunk_idx_name, shape): def _gen_chunk_slice_dim(chunk_dim, chunk_idx_name, shape):
@ -695,8 +694,9 @@ def emit_code_with_chunk(body, ckpt_func, nodes, emit_node_func, delete_unused_v
within_chunk_region = False within_chunk_region = False
node_list = list(nodes) node_list = list(nodes)
_estimate_chunk_inference_mem(meta_graph, chunk_starts, chunk_ends, [1], [2]) memory_estimator = MemoryEstimator()
_estimate_inference_mem(meta_graph) memory_estimator.estimate_chunk_inference_mem(meta_graph, chunk_starts, chunk_ends, [1], [2])
memory_estimator.estimate_inference_mem(meta_graph)
node_index_tracer = NodeIndexTracer(meta_graph) node_index_tracer = NodeIndexTracer(meta_graph)
node_index_tracer.trace_node_idx() node_index_tracer.trace_node_idx()