polish code

pull/2364/head
oahzxl 2022-11-15 10:36:02 +08:00
parent f379d1a94d
commit 7e2bd1e428
1 changed files with 8 additions and 250 deletions

View File

@ -3,20 +3,11 @@ import torch
import copy
from typing import List, Callable, Any, Tuple, Dict, Iterable
try:
from torch.fx.node import Node, Argument, map_arg, _type_repr, _get_qualified_name
from torch.fx.graph import _Namespace, PythonCode, _custom_builtins, _is_from_torch, _format_target, magic_methods, CodeGen, _origin_type_map, inplace_methods, _CustomBuiltin
from colossalai.fx.profiler import calculate_fwd_out, calculate_fwd_tmp, parameter_size, activation_size
CODEGEN_AVAILABLE = True
except:
from torch.fx.graph import _Namespace, PythonCode, _custom_builtins, _is_from_torch, _format_target, magic_methods, _origin_type_map, _format_args, _CustomBuiltin
from torch.fx.node import Node, Argument, map_arg, _type_repr, _get_qualified_name
CODEGEN_AVAILABLE = False
if CODEGEN_AVAILABLE:
__all__ = ['ChunkCodeGen']
else:
__all__ = ['python_code_with_activation_checkpoint']
from torch.fx.node import Node, Argument, map_arg, _type_repr, _get_qualified_name
from torch.fx.graph import _Namespace, PythonCode, _custom_builtins, _is_from_torch, _format_target, magic_methods, CodeGen, _origin_type_map, inplace_methods, _CustomBuiltin
from colossalai.fx.profiler import calculate_fwd_out, calculate_fwd_tmp, parameter_size, activation_size
CODEGEN_AVAILABLE = True
__all__ = ['ChunkCodeGen']
class NodeIndexTracer(object):
@ -289,9 +280,9 @@ class NodeIndexTracer(object):
2. compute the real value of -1 in target shape.
3. determine changed dim, and assgin index for generated dim.
4. log changed dim and generated dim for restore
5. look into view list to see whether the view is associated with other,
5. inherit computation.
6. TODO: look into view list to see whether the view is associated with other,
if so assgin equal dim according to previous view.
6. inherit computation.
Args:
node (node)
@ -352,7 +343,7 @@ class NodeIndexTracer(object):
self.mark_computation(node, node_idx, [j])
break
# log view
# log view, not used now
view_dict = {"idx_from": [origin_trace[i] for i in dim_from],
"dim_from": dim_from,
"idx_to": [new_trace[i] for i in dim_to],
@ -680,239 +671,6 @@ def _find_idx_by_name(name, nodes_list):
if node.name == name:
return idx
raise RuntimeError("name %s not found in node list" % name)
def _find_offload_regions(nodes: List[Node]):
"""This function is to find the offload regions
In pofo algorithm, during annotation, we will annotate the offload region with the
list in the form of [idx, offload_input, offload_bar]. idx indicates the offload
region's index, offload_input is a bool type indicates whether we need to offload
the input, offload_bar is a bool type indicates whether we need to offload all the
intermediate x_bars of this region.
"""
offload_regions = []
offload_labels = []
start = -1
end = -1
current_region = None
for idx, node in enumerate(nodes):
if hasattr(node, 'activation_offload') and isinstance(getattr(node, 'activation_offload', None), Iterable):
act_offload_label = node.activation_offload
if current_region == None:
current_region = act_offload_label
start = idx
offload_labels.append(act_offload_label)
if act_offload_label != current_region:
assert start != -1
offload_regions.append((start, idx - 1))
offload_labels.append(act_offload_label)
current_region = act_offload_label
start = idx
end = -1
else:
if current_region is not None:
end = idx - 1
assert start != -1 and end != -1
offload_regions.append((start, end))
start = end = -1
current_region = None
else:
pass
return offload_regions, offload_labels
def _gen_ckpt_fn_def(label, free_vars: List[str]) -> str:
"""
Generate the checkpoint function definition
"""
return f"def checkpoint_{label}({', '.join(['self'] + free_vars)}):"
def _gen_ckpt_output(output_vars: List[str]) -> str:
"""
Generate the return statement for checkpoint region
"""
return f"return {', '.join(output_vars)}"
def _gen_ckpt_usage(label, activation_offload, input_vars, output_vars, use_reentrant=True):
"""
Generate the checkpoint function call code text
"""
outputs = ', '.join(output_vars)
inputs = ', '.join(input_vars)
return f'{outputs} = colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_{label}, {activation_offload}, {inputs}, use_reentrant={use_reentrant})'
def _end_of_ckpt(node: Node, check_idx: int) -> bool:
"""Check if the node could end the ckpt region
Args:
node (Node): torch.fx.Node
check_idx (int): the index of checkpoint level for
nested checkpoint
Returns:
bool
"""
if hasattr(node, "activation_checkpoint"):
if isinstance(node.activation_checkpoint, list):
return node.activation_checkpoint[check_idx] == None
else:
return False
else:
return True
def _find_nested_ckpt_regions(nodes, check_idx=0):
"""
Find the nested checkpoint regions given a list of consecutive nodes. The outputs
will be list of tuples, each tuple is in the form of (start_index, end_index).
"""
ckpt_regions = []
start = -1
end = -1
current_region = None
for idx, node in enumerate(nodes):
if hasattr(node, 'activation_checkpoint'):
if isinstance(getattr(node, 'activation_checkpoint'), int):
act_ckpt_label = node.activation_checkpoint
else:
act_ckpt_label = node.activation_checkpoint[check_idx]
# this activation checkpoint label is not set yet
# meaning this is the first node of the activation ckpt region
if current_region is None:
current_region = act_ckpt_label
start = idx
# if activation checkpoint has changed
# we restart the tracking
# e.g. node ckpt states = [ckpt1, ckpt2, ckpt2, ckpt2]
if act_ckpt_label != current_region:
assert start != -1
ckpt_regions.append((start, idx - 1))
current_region = act_ckpt_label
start = idx
end = -1
elif current_region is not None and _end_of_ckpt(node, check_idx):
# used to check the case below
# node ckpt states = [ckpt, ckpt, non-ckpt]
end = idx - 1
assert start != -1 and end != -1
ckpt_regions.append((start, end))
start = end = -1
current_region = None
else:
pass
if current_region is not None:
end = len(nodes) - 1
ckpt_regions.append((start, end))
return ckpt_regions
def emit_ckpt_func(body,
ckpt_func,
node_list: List[Node],
emit_node_func,
delete_unused_value_func,
level=0,
in_ckpt=False):
"""Emit ckpt fuction in nested way
Args:
body: forward code, in recursive calls, this part will be checkpoint
functions code
ckpt_func: checkpoint functions code, in recursive calls, this part
will be a buffer
node_list (List[Node]): list of torch.fx.Node
emit_node_func: function to emit a node
delete_unused_value_func: function to delete unused value
level (int, optional): checkpoint level. Defaults to 0.
in_ckpt (bool, optional): indicates wether the func is in recursive
call. Defaults to False.
"""
inputs, outputs = _find_input_and_output_nodes(node_list)
# if the current checkpoint function use int as label, using old generation method
if isinstance(node_list[0].activation_checkpoint, int):
label = node_list[0].activation_checkpoint
ckpt_fn_def = _gen_ckpt_fn_def(label, inputs)
ckpt_func.append(f'{ckpt_fn_def}\n')
for node in node_list:
emit_node_func(node, ckpt_func)
ckpt_func[-1] = ' ' + ckpt_func[-1]
delete_unused_value_func(node, ckpt_func)
ckpt_func.append(' ' + _gen_ckpt_output(outputs) + '\n\n')
activation_offload = getattr(node_list[0], "activation_offload", False)
usage = _gen_ckpt_usage(label, activation_offload, inputs, outputs, False)
usage += "\n"
body.append(usage)
# use nested ckpt function codegen
else:
# label given by each layer, e.g. if you are currently at level [0, 1, 1]
# the label will be '0_1_1'
label = "_".join([str(idx) for idx in node_list[0].activation_checkpoint[:level + 1]])
ckpt_fn_def = _gen_ckpt_fn_def(label, inputs)
ckpt_func.append(f'{ckpt_fn_def}\n')
# if there is more level to fetch
if level + 1 < len(node_list[0].activation_checkpoint):
ckpt_regions = _find_nested_ckpt_regions(node_list, level + 1)
start_idx = [item[0] for item in ckpt_regions]
end_idx = [item[1] for item in ckpt_regions]
# use ckpt_func_buffer to store nested checkpoint functions
ckpt_func_buffer = []
node_idx = 0
while 1:
if node_idx >= len(node_list):
break
if node_idx in start_idx:
ckpt_node_list = node_list[node_idx:end_idx[start_idx.index(node_idx)] + 1]
emit_ckpt_func(ckpt_func, ckpt_func_buffer, ckpt_node_list, emit_node_func,
delete_unused_value_func, level + 1, True)
node_idx += len(ckpt_node_list)
else:
node = node_list[node_idx]
emit_node_func(node, ckpt_func)
ckpt_func[-1] = ' ' + ckpt_func[-1]
delete_unused_value_func(node, ckpt_func)
node_idx += 1
ckpt_func.append(' ' + _gen_ckpt_output(outputs) + '\n\n')
ckpt_func += ckpt_func_buffer
activation_offload = getattr(node_list[0], "activation_offload", False)
usage = _gen_ckpt_usage(label, activation_offload, inputs, outputs, False) + '\n'
if in_ckpt:
usage = ' ' + usage
body.append(usage)
# last level
else:
for node in node_list:
emit_node_func(node, ckpt_func)
ckpt_func[-1] = ' ' + ckpt_func[-1]
delete_unused_value_func(node, ckpt_func)
ckpt_func.append(' ' + _gen_ckpt_output(outputs) + '\n\n')
activation_offload = getattr(node_list[0], "activation_offload", False)
usage = _gen_ckpt_usage(label, activation_offload, inputs, outputs, False) + '\n'
if in_ckpt:
usage = ' ' + usage
body.append(usage)
def emit_code_with_chunk(body, ckpt_func, nodes, emit_node_func, delete_unused_value_func, meta_nodes, meta_graph):