Browse Source

Merge pull request #5733 from Hz188/feature/prefetch

[Gemini] implement auto policy prefetch and a little origin code modification.
pull/5738/head
botbw 6 months ago committed by GitHub
parent
commit
f5b7de38a4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 7
      colossalai/zero/gemini/gemini_hook.py
  2. 6
      colossalai/zero/gemini/gemini_mgr.py
  3. 57
      colossalai/zero/gemini/placement_policy.py
  4. 2
      examples/language/gpt/gemini/run_gemini.sh
  5. 5
      examples/language/gpt/gemini/train_gpt_demo.py

7
colossalai/zero/gemini/gemini_hook.py

@ -50,7 +50,12 @@ class GeminiZeROHook(ColoParamOpHook):
self._chunk_manager.access_chunk(chunk)
# get possible chunks to prefetch
chunks_fetch_async = self._gemini_manager.placement_policy.get_prefetch_chunks()
chunks_fetch_async = self._gemini_manager.placement_policy.get_prefetch_chunks(
is_warmup=self._gemini_manager.is_warmup(),
compute_list=self._gemini_manager.compute_list,
compute_idx=self._gemini_manager.compute_idx,
async_works=self._gemini_manager.async_works,
)
# prefetch
for chunk in chunks_fetch_async:

6
colossalai/zero/gemini/gemini_mgr.py

@ -45,7 +45,7 @@ class GeminiManager:
self._placement_policy = policy_cls(self, chunk_manager, self._mem_stats_collector, **placement_kwargs)
self._compute_list: List[Tuple[Chunk, ...]] = []
self._compute_idx: int = -1
self._async_works: Dict[Chunk, dist.work] = {}
self._async_works: Dict[Chunk, dist.Work] = {}
self._h2d_volume = 0
self._d2h_volume = 0
@ -183,6 +183,10 @@ class GeminiManager:
def compute_idx(self) -> int:
return self._compute_idx
@property
def async_works(self) -> Dict[Chunk, dist.Work]:
return self._async_works
@property
def placement_policy(self) -> PlacementPolicy:
return self._placement_policy

57
colossalai/zero/gemini/placement_policy.py

@ -5,6 +5,7 @@ from time import time
from typing import Dict, List, Optional, Tuple, Type
import torch
import torch.distributed as dist
from colossalai.accelerator import get_accelerator
from colossalai.legacy.utils.memory import colo_device_memory_capacity
@ -19,13 +20,11 @@ class PlacementPolicy(ABC):
def __init__(
self,
gemini_manager: "GeminiManager", # TODO @botbw: solve circular import
chunk_manager: ChunkManager,
mem_stats_collector: Optional[ChunkMemStatsCollector] = None,
max_prefetch: int = 0,
**kwargs,
) -> None:
self.gemini_manager = gemini_manager
self.chunk_manager = chunk_manager
self.mem_stats_collector: Optional[ChunkMemStatsCollector] = mem_stats_collector
self.max_prefetch = max_prefetch
@ -40,14 +39,15 @@ class PlacementPolicy(ABC):
) -> None:
raise NotImplementedError
def get_prefetch_chunks(self) -> List[Chunk]:
def get_prefetch_chunks(
self, is_warmup, compute_list: tuple, compute_idx: int, async_works: Dict[Chunk, dist.Work]
) -> List[Chunk]:
return [] # no prefetch by default
class StaticPlacementPolicy(PlacementPolicy):
def __init__(
self,
gemini_manager: "GeminiManager",
chunk_manager: ChunkManager,
mem_stats_collector: Optional[ChunkMemStatsCollector] = None,
max_prefetch: int = 0,
@ -56,9 +56,7 @@ class StaticPlacementPolicy(PlacementPolicy):
offload_param_frac: float = 0.0,
**kwargs,
) -> None:
super().__init__(
gemini_manager, chunk_manager, mem_stats_collector=mem_stats_collector, max_prefetch=max_prefetch
)
super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector, max_prefetch=max_prefetch)
if offload_param_frac > 0.0 and (shard_param_frac != 1.0 or offload_optim_frac != 1.0):
warnings.warn("offload_param_frac is ignored when shard_param_frac != 1.0 or offload_optim_frac != 1.0")
offload_param_frac = 0.0
@ -109,21 +107,22 @@ class StaticPlacementPolicy(PlacementPolicy):
self.keep_gathered_chunk_mem = total_chunk_mem * (1 - self.shard_param_frac)
self.keep_cuda_chunk_mem = total_chunk_mem * (1 - self.offload_param_frac)
def get_prefetch_chunks(self) -> List[Chunk]:
if self.gemini_manager.is_warmup(): # no prefetch during warmup since we need compute_list
def get_prefetch_chunks(
self, is_warmup: bool, compute_list: tuple, compute_idx: int, async_works: Dict[Chunk, dist.Work]
) -> List[Chunk]:
if is_warmup: # no prefetch during warmup since we need compute_list
return []
can_prefetch = self.max_prefetch - len(self.gemini_manager._async_works)
can_prefetch = self.max_prefetch - len(async_works)
prefetch = []
for i in range(self.gemini_manager.compute_idx + 1, len(self.gemini_manager.compute_list)):
break_flag = False
for chunk in self.gemini_manager.compute_list[i]:
for i in range(compute_idx + 1, len(compute_list)):
for chunk in compute_list[i]:
if len(prefetch) >= can_prefetch:
break_flag = True
break
if chunk not in prefetch and chunk not in self.chunk_manager.accessed_chunks:
prefetch.append(chunk)
if break_flag:
break
else:
continue
break
return prefetch
@ -132,7 +131,6 @@ class AutoPlacementPolicy(PlacementPolicy):
def __init__(
self,
gemini_manager: "GeminiManager",
chunk_manager: ChunkManager,
mem_stats_collector: Optional[ChunkMemStatsCollector] = None,
max_prefetch: int = 0,
@ -140,9 +138,7 @@ class AutoPlacementPolicy(PlacementPolicy):
steady_cuda_cap_ratio: float = 0.9,
**kwargs,
) -> None:
super().__init__(
gemini_manager, chunk_manager, mem_stats_collector=mem_stats_collector, max_prefetch=max_prefetch
)
super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector, max_prefetch=max_prefetch)
# model data will use 1-_warmup_non_model_data_ratio CUDA memory in warmup phase
# you can set them by AutoPlacementPolicy.set_warmup_non_model_data_ratio()
# and AutoPlacementPolicy.set_steady_cuda_cap_ratio()
@ -233,8 +229,10 @@ class AutoPlacementPolicy(PlacementPolicy):
else:
grads_device_map[p] = torch.device("cpu")
def get_prefetch_chunks(self) -> List[Chunk]:
if self.gemini_manager.is_warmup(): # no prefetch during warmup since we need compute_list
def get_prefetch_chunks(
self, is_warmup: bool, compute_list: tuple, compute_idx: int, async_works: Dict[Chunk, dist.Work]
) -> List[Chunk]:
if is_warmup: # no prefetch during warmup since we need compute_list
return []
# modified from self.evict_tensors
cuda_capacity = self._steady_cuda_cap_ratio * colo_device_memory_capacity(
@ -246,19 +244,18 @@ class AutoPlacementPolicy(PlacementPolicy):
avail_cuda_model_data = total_cuda_model_data - used_cuda_model_data
prefetch_chunk_memory = 0
can_prefetch = self.max_prefetch - len(self.gemini_manager._async_works)
can_prefetch = self.max_prefetch - len(async_works)
prefetch = []
for i in range(self.gemini_manager.compute_idx + 1, len(self.gemini_manager.compute_list)):
break_flag = False
for chunk in self.gemini_manager.compute_list[i]:
chunk: Chunk
for i in range(compute_idx + 1, len(compute_list)):
for chunk in compute_list[i]:
if len(prefetch) >= can_prefetch or prefetch_chunk_memory + chunk.chunk_mem > avail_cuda_model_data:
break_flag = True
break
if chunk not in prefetch and chunk not in self.chunk_manager.accessed_chunks:
prefetch_chunk_memory += chunk.chunk_mem
prefetch.append(chunk)
if break_flag:
break
else:
continue
break
return prefetch

2
examples/language/gpt/gemini/run_gemini.sh

@ -6,7 +6,7 @@ export DISTPLAN=${DISTPLAN:-"CAI_Gemini"}
export GPUNUM=${GPUNUM:-1}
export BATCH_SIZE=${BATCH_SIZE:-16}
export MODEL_TYPE=${MODEL_TYPE:-"gpt2_medium"}
export TRAIN_STEP=${TRAIN_STEP:-10}
export TRAIN_STEP=${TRAIN_STEP:-2}
# export PYTHONPATH=$PWD:$PYTHONPATH

5
examples/language/gpt/gemini/train_gpt_demo.py

@ -66,11 +66,11 @@ class GPTLMLoss(nn.Module):
def get_cpu_mem():
return psutil.Process().memory_info().rss / 1024**2
return psutil.Process().memory_info().rss / 1024**2 # MB unit
def get_gpu_mem():
return torch.cuda.memory_allocated() / 1024**2
return torch.cuda.memory_allocated() / 1024**2 # MB unit
def get_mem_info(prefix=""):
@ -78,6 +78,7 @@ def get_mem_info(prefix=""):
def get_model_size(model: nn.Module):
# get the number of parameter of the model
total_numel = 0
for module in model.modules():
for p in module.parameters(recurse=False):

Loading…
Cancel
Save