[hotfix] fix autoparallel demo (#2533)

pull/2540/head
YuliangLiu0306 2 years ago committed by GitHub
parent 63199c6687
commit f477a14f4a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -3,8 +3,9 @@ from torchvision.models import resnet50
from tqdm import tqdm
import colossalai
from colossalai.auto_parallel.tensor_shard.initialize import autoparallelize
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
from colossalai.core import global_context as gpc
from colossalai.device.device_mesh import DeviceMesh
from colossalai.logging import get_dist_logger
from colossalai.nn.lr_scheduler import CosineAnnealingLR
@ -22,9 +23,14 @@ def main():
# trace the model with meta data
model = resnet50(num_classes=10).cuda()
input_sample = {'x': torch.rand([gpc.config.BATCH_SIZE * torch.distributed.get_world_size(), 3, 32, 32]).to('meta')}
device_mesh = DeviceMesh(physical_mesh_id=torch.tensor([0, 1, 2, 3]), mesh_shape=[2, 2], init_process_group=True)
model, solution = initialize_model(model, input_sample, device_mesh=device_mesh, return_solution=True)
model = autoparallelize(model, input_sample)
if gpc.get_global_rank() == 0:
for node_strategy in solution:
print(node_strategy)
# build criterion
criterion = torch.nn.CrossEntropyLoss()
@ -52,6 +58,7 @@ def main():
output = model(img)
train_loss = criterion(output, label)
train_loss.backward(train_loss)
torch.cuda.synchronize()
optimizer.step()
lr_scheduler.step()

Loading…
Cancel
Save